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ABSTRACT

We make a case that characteristics-based long-short factors should be constructed by the slope

factor method rather than by sorting methods. This is because sorting does not fully control for

the influence of omitted characteristics, rendering them more noisy than slope factors. In contrast,

slope factors, by virtue of being pure-play, lead to higher volatility stochastic discount factors,

and better potential for pricing the cross-section. We show that an eight slope factor based asset

pricing model captures risks that are mostly not priceable by existing models. It outperforms on

several dimensions: factor risk premia; OOS Sharpe-ratios of tangency portfolios; and pricing of

portfolios, ETFs and stocks.

JEL Classification: G11, G12, G14

Keywords: factor risk premia; firm level characteristics; marginal likelihood; pricing test;

stochastic discount factor; risk factors; out-of-sample Sharpe-ratio
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1 Introduction

It is commonly believed that factors such as HML, SMB, MOM and the scores of other factors

that are constructed as the difference in value-weighted returns of portfolios sorted on size and the

lagged characteristic represent the risk associated with that characteristic. Under this assumption,

a large literature in finance is concerned with whether the factor is priced in the cross-section

of returns. But, what if the factor is not quite what it seems? Suppose that the HML factor

constructed in this way is not a value factor, but a factor that incorporates the risks of many

other characteristics. We argue that besides complicating interpretation, this dependence on other

characteristics increases the correlation amongst the factors and makes each factor more volatile.

The higher correlation complicates the search for which of these factors is in the SDF, while the

excess noise harms the ability of these factors to price the cross-section.

To understand these points, suppose that we aim to construct factors that represent 50 firm-

level characteristics. In the sort based method, which we henceforth refer to as the differential

method, for each cross-section consisting of a large number of publicly traded firms, and for each

characteristic, we sort the firms on size (market cap), say small and big, and on levels of that lagged

characteristic (say three levels based on its quantiles). For each characteristic, this classifies the

firms into these six groupings. The essential justification for the differential method is that sorting

decouples the returns of firms with high and low levels of that characteristic, for a given size, from

the excluded characteristics. Under this decoupling assumption, long-short portfolios made from

the extremes of that characteristics represent the returns that accrue to that characteristic. But does

sorting decouple returns in this way?

Consider, for example, the five characteristics, size (mve), value (bm), operating profitability

(operprof ), investment (agr), and momentum (mom12m) that correspond to the Fama and French
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(2018) factors. For monthly data on a large collection of firms from January 1989 to December

2020 (T = 384) we sort the excess returns for that month by size (2 levels) and each characteristic (3

levels). We then combine the data that are used to make the long-short portfolio for that factor, for

that month, and run a regression of those excess returns on the excluded 48 characteristics. For each

month we run five such regressions, one for each of these characteristics. From each regression we

tabulate which of those excluded characteristics are significant at the 0.01 level. We do this check

at the 0.01, rather than a 0.05 threshold, to reduce the chance of false-positives. We repeat these

regressions for each month. The results appear in Table 1 where the numbers in the table indicate

the frequency of times (divided by 384) that a particular excluded characteristic (given in the row)

is significant in those regressions. From this table we can see that the return data that are used

to construct the FF6 factors tend to be correlated with several other characteristics. For example,

the returns used to construct the HML factor are correlated with the bid-ask spread (baspread),

the CAPM beta (beta), mom12m and mom1m characteristics. Thus, the HML differential factor

captures the risk not only related to bm, but also the risks stemming from the baspread, beta and

mom12m characteristics.

Table 1 Regression of excess returns used for the construction of each FF6 characteristics-based
double sorted differential factor against the excluded 48 characteristics, by month. The numbers
in the table (going down each column) are the number of months divided by the total number of
months (T = 384) that the excluded characteristic (given in the row) is significant at the 0.01
level. Each column has a NA for the characteristic on which the returns in that column are sorted
on. Since the returns are always first sorted on size, the regressions never include the size
characteristic. The data are from January 1989 to December 2020.

returns returns returns returns returns
used for mve used for bm used for operprof used for agr used for mom12m

acc 9.38 7.03 8.33 8.33 9.11
age 7.29 6.25 5.47 4.69 5.73
agr 8.33 7.03 4.43 NA 5.73
baspread 35.42 33.59 34.38 34.11 35.42
beta 35.94 36.46 37.76 36.46 38.02
bm 12.5 NA 14.84 12.76 13.54
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Table 1 continued:

returns (mve) returns (bm) returns (operprof) returns (agr) returns (mom12m)
cash 10.94 13.8 12.76 12.5 11.72
cashdebt 10.94 10.68 10.94 8.59 11.2
cashpr 3.65 4.43 2.6 2.34 3.39
cfp 13.28 11.72 12.24 10.16 11.72
chatoia 5.21 5.73 4.17 4.43 3.91
chcsho 5.21 5.47 5.21 4.43 5.73
chempia 4.17 4.43 3.91 3.39 5.21
convind 2.86 2.86 3.39 2.86 3.91
depr 6.25 4.43 5.21 5.47 5.21
dy 7.03 7.81 7.55 7.81 8.07
egr 8.59 7.81 4.95 6.51 8.59
ep 15.62 15.1 16.15 15.62 13.02
gma 10.42 8.85 13.8 9.38 9.9
grcapx 4.17 3.39 5.21 4.17 5.21
herf 2.86 3.39 4.17 2.6 3.39
hire 7.03 6.77 5.99 5.21 5.73
idiovol 22.66 22.92 19.53 21.35 19.53
ill 23.18 20.31 21.61 19.27 20.31
indmom 15.62 15.89 15.89 20.31 24.74
invest 6.25 8.33 7.03 5.73 6.77
lev 14.84 17.19 12.5 13.8 15.89
lgr 4.69 4.43 5.21 2.86 3.65
mom12m 27.6 33.33 32.03 31.77 NA
mom1m 39.32 38.54 37.5 39.84 38.8
nincr 2.08 2.34 2.34 2.34 2.86
operprof 3.39 3.39 NA 3.65 2.86
pchgm pchsale 6.25 5.99 5.73 8.33 5.73
pricedelay 4.43 3.39 2.34 3.39 3.65
ps 3.12 3.12 2.08 2.86 3.12
rd 5.73 6.77 4.43 5.47 4.17
roaq 14.84 14.84 10.42 10.42 13.54
roeq 14.84 8.85 8.33 10.68 11.2
roic 9.11 9.9 10.16 10.16 11.98
salecash 1.04 2.86 2.08 1.82 2.08
saleinv 1.3 1.3 0.78 1.3 1.82
salerec 7.29 6.51 8.07 6.25 8.33
sgr 5.21 7.55 5.47 4.95 5.47
sin 1.3 2.34 2.08 1.3 1.82
sp 10.94 10.68 10.16 10.68 10.94
std dolvol 17.19 16.41 16.41 18.23 17.97
std turn 23.96 23.18 21.61 24.74 22.92
tang 5.73 5.47 4.95 5.73 6.25
tb 3.65 1.82 1.82 1.82 2.6
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There are three main consequences of this dependence of differential factors on other

characteristics. One is that the factors constructed in this way are difficult to interpret. An

equally significant consequence is that since each factor depends on several intersecting excluded

characteristics, the dependence amongst the factors tends to be high. As a result, suppose we were

to construct factors of all the fifty characteristics, with the aim of finding the subset of factors that is

involved in pricing. The high correlation amongst the factors makes this discovery more difficult in

the context of the monthly sample sizes that are encountered in practice. Finally, and vitally, since

the returns that make up these factors also depend on uncontrolled excluded characteristics, the

combined variation in all of those omitted characteristics produces factors with excess volatility.

A consequence of this excess volatility is that the stochastic discount factor (SDF), linear in these

factors becomes less variable. And since prices are determined by the covariance of the SDF

with next period payoffs (which are typically very variable), this reduced variability of the SDF

jeopardizes the ability of SDFs based on these factors to price the cross-section.1

To overcome these problems, we argue that factors from characteristics should be made by the

slope factor method that was first described in Fama (1976). Apart from the recent work in Back,

Kapadia, and Ostdiek (2013), Back, Kapadia, and Ostdiek (2015) and Fama and French (2020),

this method has rarely been used in the literature. We feel that this neglect is entirely undeserved.

The slope factor method is a stand-out method that has none of the limitations of the differential

construction method. Essentially, in the slope factor method, one runs cross-sectional regressions

of excess returns on lagged standardized characteristics. From properties of the OLS estimates,

it can be shown that the estimated OLS slopes from these regressions are automatically long-

1The same points apply to the rank factor construction method used by Asness, Frazzini, and Pedersen (2019),
Kelly, Pruitt, and Su (2019), Chen, Pelger, and Zhu (2020), Freyberger, Neuhierl, and Weber (2020), and Kozak,
Nagel, and Santosh (2020). After grouping excess returns by market cap, factors are constructed using the normalized
rank of lagged characteristics as weights. To avoid duplication, we do not discuss this approach for constructing factors
further in this paper.
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short portfolios that give unit weighted exposure to each lagged characteristic and zero weighted

exposure to the other lagged characteristics in the regression. Thus, these factors are pure-play

representing precisely the risk of the underlying characteristic, purged of the effect of the other

characteristics. Because of this pure-play property, the slope factors also tend to be much less

mutually correlated than differential factors and, crucially, much less noisy than differential factors

(since the effect of other characteristics has been purged out). As a bonus, constructing factors by

this method is a simple exercise in regression.

This is also the first paper in which slope factors are constructed from a large pool of initial

characteristics, going beyond the five slope factors in Fama and French (2020). In fact, it is only

by starting from such a large pool of characteristics that one can take full advantage of the pure-

play property. The motivation for this is the same as in any regression analysis. By including

more useful controls one gets better estimates of the slopes, hence, improved slope factors. A

by-product of constructing improved slope factors is that one can readily observe the difference in

noise between the differential and slope factors.

In an effort to realize the potential of slope factors, we provide in this paper the first slope factor

based asset pricing model that is built from the ground up. We do not simply take an existing asset

pricing model and replace the differential factors by slope factors, because such a model can be

easily improved. We call our new model the CLPZ8 slope factor model. The CLPZ8 model

consists of the market factor plus seven slope factors, BASPREADS, BETAS, EGRS, MOM1MS,

MVES, RDS, ROAQS (from our pool of fifty) that we infer are in the stochastic discount factor

(SDF). We apply a novel Bayesian method, motivated by machine learning precepts, to discover

these eight risk factors. We start by being agnostic about which factors are in the stochastic

discount factor, just as in Kozak et al. (2020), but instead of using a regularized likelihood

procedure to estimate the SDF coefficients conditioned on a plug-in estimate of the fifty one times
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fifty one factor covariance matrix, we extend their method to learn about the SDF coefficients from

a full Bayesian procedure in which the factor risk premium and factor covariance matrix are both

assumed unknown. We conduct this analysis under the regularizing prior of Chib, Zeng, and Zhao

(2020), a multivariate-student-t likelihood, and a strong 0.99 posterior credibility decision rule to

infer which SDF coefficients are non-zero. Then, in the second step, to catch the few false-positives

that may have slipped through from the first step, we apply the model scan methodology of Chib

and Zeng (2020) on the factors that passed the first step to find the best asset pricing model.

Six of the seven non-market risk factors in the CLPZ8 model have significant risk premia, in

stark contrast to the insignificant factor risk premia in existing models. For instance, in the FF6

model, two of the five non-market factors have significant factor risk premia; in the q5 model, two

of the four are significant; and in the DHS model, one out of two is significant. One implication of

the significant CLPZ8 factor risk premia is that tangency portfolios of the CLPZ8 factors generate

substantially larger OOS realized Sharpe-ratios compared to factor portfolios made from the factors

of the current models. Beyond this, the CLPZ8 factors, for the most part, are not priceable by the

existing models, showing that we have unearthed risks that are relevant for pricing the cross-section

that have been overlooked by the existing models. In the reverse direction, we show that the CLPZ8

model is capable of pricing essentially all of the factors in the existing models.

As one would expect, given the understanding from our previous discussion, the SDF that

we infer from the data of the CLPZ8 model is more variable than the SDFs of the FF6, q5 and

DHS models. This has consequences for pricing which we document. We also provide evidence

of outperformance in pricing a large collection of test assets comprised of 1225 portfolios, 1480

ETFs and 6024 stocks.

The rest of the paper is organized as follows. In Section 2 we describe the construction of slope
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factors and draw contrasts between the slope factors and the differential factors. In Section 3 we

provide a new slope factor asset pricing model and the statistical discovery process that led to this

model. Section 4 illuminates aspects of this model, posterior distributions of the factor risk premia

and of the SDF underlying the model. In Section 5, the pricing performance of the new model is

illustrated on a large collection of portfolios, ETFs and stocks. Section 6 concludes.

2 Slope factors

2.1 Data

We collect monthly stock returns data from CRSP. The set of characteristics are those considered

in Green, Hand, and Zhang (2017) and Gu, Kelly, and Xiu (2020), and are sourced from Compustat

and I/B/E/S. Our data contain information from 14,860 firms on 50 characteristics for the period

January 1989 to December 2020.

For our analysis, we begin the sample from January 1989, which is the earliest month for which

complete data on our selected characteristics are available in the I/B/E/S data set. Our aim is to

be able to estimate cross-sectional regressions for firms that have a complete set of characteristics

in the preceding cross-sections. One common approach is to only analyze firms with non-missing

values of all fifty characteristics in each cross-section. This approach, however, sacrifices a large

portion of the data that may contain valuable information. We apply a simple new non-parametric

approach to deal with the missing data that helps to avoid omitting this valuable information. We

proceed as follows. In each cross-section, we first classify firms into two groups, small and big,

by the median value of firm size, and then within each size group, we further categorize each firm

into five industry groups based on its SIC4 code. In this way, each firm is uniquely assigned to one
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of 2×5 = 10 groups. Then, if any firm has missing value for a particular characteristic, we replace

the missing value with the group mean of that characteristic from firms within the same group.

This imputation procedure is based on the assumption that firms of similar size within the same

industry have similar characteristics. These steps produce a rich collection of cross-sectional data

sets in which the minimum number of firms is 2051 and the maximum number of firms is 5184.

We summarize the data, by characteristics, in Table 10.

2.2 OLS estimates are factors

As first stated in Fama (1976), the OLS estimates of the coefficients in cross-sectional regressions

of excess returns on standardized lagged characteristics are pure-play long-short portfolios.

Specifically, these OLS coefficients give unit weighted exposure to each standardized lagged char-

acteristic in the cross-section regression and zero weighted exposure to all the other standardized

lagged characteristics. Thus, these OLS estimates are characteristic specific long-short portfolios

that load entirely on that characteristic. Since this fundamental property is not that well known, we

start by providing a simple explanation.

Suppose that the tth cross-section consists of nt firms that are independently sampled from the

population of firms at time t. Let rt = (r1t , ...,rnt ,t) denote the the sample vector of excess returns

and suppose that two firm characteristics, c1 and c2 are measured. Let the sample data on these

characteristics at time t be denoted by the nt × 1 vectors, c j,t = (c j,1, ...,c j,nt ), j = 1,2. Assume

that c j,t are each standardized by subtracting the respective sample means and dividing by the

respective sample standard deviations. In vector-matrix notation, the tth cross-sectional regression

is given by

rt =Xtβt +εt
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where Xt = (int ,c1,t−1,c2,t−1) is a nt × 3 matrix of sample data on the intercept and the two

characteristics and int is a vector of ones. The coefficient vector βt is a 3× 1 vector of cross-

section specific coefficients and εt is a vector of iid homoskedastic cross-sectional errors. Now

consider the OLS estimate of βt , namely β̂t = (X ′
tXt)

−1X ′
trt . This can be expressed as a linear

combination of the excess returns as

β̂t =W ′
t rt (1)

or as 
β̂0,t

β̂1,t

β̂2,t

=


w′

0rt

w′
1rt

w′
2rt


where w′

j is the jth row of W ′
t . Now from the trivial identity W ′

t Xt = I3, where I3 is the 3× 3

identity matrix, written out in full as


w′

0

w′
1

w′
2

(int ,c1,t−1,c2,t−1) =


1 0 0

0 1 0

0 0 1

 (2)

we can see, by row-column multiplication, that w j are proper weights that satisfy the following

restrictions,

w′
0int = 1; w′

0c1,t−1 = 0; w′
0c2,t−1 = 0

w′
1int = 0; w′

1c1,t−1 = 1; w′
1c2,t−1 = 0 (3)

w′
2int = 0; w′

2c1,t−1 = 0; w′
2c2,t−1 = 1

Reading these restrictions row by row, we can now conclude that β̂0,t = w′
0rt is a pure-play
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long portfolio (its weights w0 sum to one and it gives zero weighted exposure to the other two

characteristics); that β̂1,t = w′
1rt is a pure-play long-short portfolio (its weights w1 sum to zero,

it gives unit weighted exposure to the first lagged characteristic and zero weighted exposure to the

second lagged characteristic); and that β̂2,t =w′
2rt is a pure-play long-short portfolio (its weights

w2 sum to zero, it gives zero weighted exposure to the first lagged characteristic and unit weighted

exposure to the second lagged characteristic). Thus, β̂1,t and β̂2,t are characteristic specific long-

short portfolios.

It should also be clear from this derivation that regularized estimates, such as the LASSO, or

the Bayesian posterior mean with a proper prior, would not satisfy this property.

If we run the preceding cross-sectional regression separately in sequence for t = 1,2, ...,T , then

the sequence of OLS estimates β̂ j,t , t = 1, ...,T , are a sequence of long-short portfolios that load

purely on characteristic c j, j = 1,2.

2.3 Factors

Given this understanding we now proceed to make these slope factors from cross-sectional

regressions with stock premiums on the LHS and 50 lagged characteristics on the RHS

rit = αit +
50

∑
j=1

β j,tc j,it−1 + εit , i = 1, ...nt (4)

where rit is the excess return of firm i in month t, with t running from January 1989 to December

2020, αit is the intercept, β j,t is the slope of the characteristic c j,it−1, and εit is the error term which

is assumed to be iid across firms in the cross-section. The total number of firms in the cross-section,

nt , varies across time (see Coqueret (2021) for a theoretical model in which characteristics are a
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source of return heterogeneity).

As discussed in the derivation above, the RHS variable c j,it−1 in these cross-sectional

regressions are standardized for each characteristic j within each cross-section. Thus, the

sample mean, and standard-deviation, of c j,t−1 = (c j,1t−1,c j,2t−1, ...,c j,nt t−1) are zero and one,

respectively, for every j and t. Therefore, the lagged variables on the RHS are unit-less, and the

slope coefficients on the RHS are in the same units as the stock returns on the LHS.

Let the cross-sectional OLS estimates of β j,t be denoted by β̂ j,t , for j = 1,2, ...50. These

OLS estimates are the slope factors corresponding to the fifty characteristics at time t. We denote

these time t slope factors as C j,S,t , where C j emphasizes that this is the factor corresponding to

characteristic c j, and S emphasizes that this is the factor constructed by the slope factor method. A

sequence of these slope factors is obtained by estimating the cross-sectional regressions for each

month t. Finally, we augment the slope factors with the market excess return factor, Mkt. This

factor is obtained from the Kenneth French data library.

We provide summary statistics of Mkt and the constructed slope factors in Table 2. The

numbers in the table are the monthly returns (in %), along with the median, the standard deviation

(sd), and the 0.005 and 0.995 quantiles. Over the span of our data, the market portfolio has a mean

monthly return of 0.739% with thick tails running from -13.610% to 11.445%. The monthly return

of each of the long-short slope slope factors portfolios is, of course, much smaller. For example,

the EGRS long-short portfolio has a mean monthly return of -0.040% and tails running from -

1.596% to 1.366%. In general, the return of these pure-play long-short portfolios is smaller than

the return of the corresponding differential factor portfolios because the latter are not pure-play and

include the returns stemming from other correlated characteristics. It is important to note the thick

tails of these factors, a typical feature of any such data on returns of portfolios constructed from
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characteristics. In our analysis to discover which factors are in the SDF we deal with this problem

by deploying a multivariate-t distribution with small degrees of freedom. This modeling extension

to the standard Gaussian assumption is central in seeing through the fog of noise generated by such

thick tails.

Table 2 The descriptive statistics of the slope factors
This table presents the descriptive statistics of the slope factors in units of monthly returns (%).
The acronym is described in Table 10. Descriptive statistics include the mean, median, standard
deviation, and the 0.5%, 99.5% quantiles across the time-series of each slope factor. The data are
from January 1989 to December 2020.

Mean Median Std 0.5% quantile 99.5% quantile
Mkt 0.739 1.190 4.362 -13.610 11.445
ACCS -0.072 -0.078 0.680 -2.382 1.993
AGES -0.021 -0.006 0.513 -1.572 1.391
AGRS -0.147 -0.162 0.798 -2.518 2.400
BASPREADS -0.096 -0.225 1.548 -4.057 6.285
BETAS 0.029 0.025 1.628 -4.515 5.216
BMS 0.084 0.070 0.648 -1.708 1.906
CASHS 0.215 0.171 1.011 -2.475 3.605
CASHDEBTS 0.020 0.060 0.702 -2.361 1.754
CASHPRS -0.016 -0.039 0.400 -1.069 1.180
CFPS 0.021 0.050 0.778 -2.147 2.116
CHATOIAS 0.039 0.029 0.444 -1.123 1.159
CHCSHOS -0.063 -0.058 0.442 -1.557 1.434
CHEMPIAS 0.040 0.102 0.571 -1.676 1.540
CONVINDS -0.022 -0.035 0.372 -0.933 0.905
DEPRS 0.007 -0.013 0.470 -1.166 1.327
DYS -0.066 -0.102 0.541 -1.177 1.563
EGRS -0.040 -0.026 0.551 -1.596 1.366
EPS 0.077 0.091 0.986 -3.505 2.673
GMAS 0.077 0.010 0.770 -2.061 2.821
GRCAPXS -0.044 -0.048 0.427 -1.240 1.476
HERFS -0.047 -0.070 0.427 -1.206 1.614
HIRES -0.040 -0.080 0.685 -1.875 1.871
IDIOVOLS -0.081 -0.223 1.259 -3.508 4.091
ILLS 0.263 0.140 0.817 -1.651 2.898
INDMOMS 0.236 0.206 0.769 -2.217 2.799
INVESTS 0.005 -0.022 0.635 -1.625 2.372
LEVS -0.010 0.017 0.900 -2.923 2.848
LGRS -0.006 0.004 0.597 -1.85 2.163
MOM12MS 0.066 0.160 1.223 -5.253 2.516
MOM1MS -0.609 -0.410 1.275 -6.052 2.038
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Table 2 continued: The descriptive statistics of the slope factors

Mean Median Std 0.5% quantile 99.5% quantile
MVES -0.281 -0.157 1.314 -5.992 2.694
NINCRS 0.110 0.109 0.344 -0.990 1.000
OPERPROFS 0.022 0.009 0.474 -1.082 1.329
PCHGM PCHSALES 0.019 0.053 0.487 -1.511 1.563
PRICEDELAYS -0.027 -0.022 0.383 -1.227 1.046
PSS 0.029 0.039 0.457 -1.759 1.129
RDS 0.129 0.089 0.467 -0.859 1.708
ROAQS 0.091 0.201 0.877 -3.257 1.933
ROEQS 0.089 0.036 0.647 -1.498 2.245
ROICS -0.042 0.036 0.837 -4.151 1.920
SALECASHS -0.047 -0.050 0.341 -0.980 0.800
SALEINVS 0.012 0.006 0.321 -0.836 1.428
SALERECS -0.030 -0.049 0.483 -1.171 1.350
SGRS -0.090 -0.066 0.619 -1.812 1.374
SINS 0.041 0.022 0.348 -0.945 0.989
SPS 0.019 0.006 0.768 -2.013 3.132
STD DOLVOLS -0.106 -0.007 1.053 -3.862 2.323
STD TURNS 0.043 -0.045 0.867 -1.821 2.530
TANGS -0.006 -0.009 0.618 -1.811 1.813
TBS 0.021 0.011 0.349 -1.104 1.000

It is important to note that we have constructed our slope factors from a large pool of initial

characteristics. This way the resulting factors are as pure-play as we can make them. Adding more

characteristics (if they are not relevant) would not be helpful because the factors (the slopes of

those characteristics) would be then just noise and would not act as useful controls. One could go

in the other direction and start with a limited set of characteristics on the RHS, say just five, as

in Fama and French (2020), but then one would get five slope factors whose pure-play property

would, by definition, be limited to that set of characteristics. We show that such limited-pure-play

slope factors are inferior to the slope factors that we have constructed from our broad set of initial

characteristics.
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2.4 Correlation and volatility differences

Table 3 shows the correlation matrix of five pure-play slope factors, five limited-pure-play slope

factors, and five differential factors (made from 3-by-2 sorting) corresponding to the Fama and

French (2020) characteristics. From this table, one sees that the pure-play slope factors tend to

be less mutually correlated than limited-pure-play slope factors and the differential factors. The

highest correlation within the set of the pure-play slope factors is 0.337, that between the slope

factor representing the size characteristic, MVES, and the slope factor representing the momentum

characteristic, MOM12MS.
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Table 3 The correlation matrix of the five pure-play slope factors, five limited-pure-play
slope factors, and five differential factors corresponding to the Fama-French five
characteristics

Pure-play slope factors MVES BMS OPERPROFS AGRS MOM12MS

MVES 1
BMS 0.160 1
OPERPROFS -0.018 0.101 1
AGRS 0.016 0.065 0.147 1
MOM12MS 0.337 0.054 -0.005 0.067 1

Limited-pure-play slope factors
MVES 1
BMS 0.523 1
OPERPROFS 0.257 0.344 1
AGRS 0.023 -0.284 0.002 1
MOM12MS 0.060 -0.083 -0.155 -0.003 1

Differential factors MVED BMD OPERPROFD AGRD MOM12MD

MVED 1
BMD -0.176 1
OPERPROFD -0.124 -0.006 1
AGRD -0.396 -0.315 0.376 1
MOM12MD -0.409 0.178 -0.132 0.034 1

The pure-play set of slope factors are constructed from cross-sectional regressions that
involve the full set of 50 characteristics in Table 10. The limited-pure-play set of slope
factors are constructed from cross-sectional regressions that contain the limited set of
characteristics, size (mve), book-to-market ratio (bm), operating profitability (operpro f ),
asset growth (agr), and momentum (mom12m), on the RHS. The differential factors are
constructed by double-sorting (3-by-2) high-minus-low method. Sample data are monthly,
spanning the period January 1989 - December 2020.
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As can be seen from the table, the correlation among the limited-pure-play slope factors

and that among the differential factors are, in general, higher than that of the pure-play slope

factors. This shows the importance of constructing slope factors from a relevant, broad set of

characteristics.

As mentioned above, because slope factors are purged off the influence of other characteristics,

while the differential factors are not, the factors from the two methods for the same characteristic

are quite different. For example, consider the SMB factor in FF6 and its slope factor counterpart,

MVES. The time series of this pair of factors is shown in the top panel of Figure 1. The

bottom panel of the same figure shows another companion pair, that of the MOM factor in FF6

and the slope factor of 12-month momentum MOM12MS. While the movement in the series

follow roughly the same pattern, the correlation is not perfect. In fact the correlation between

the two series is 0.53 in the top panel and 0.75 in the bottom panel. This imperfect correlation

between the pairs shows that the differential factors measure something different than the stated

underlying characteristic (see the discussion surrounding Table 1). In effect, the differential factors

are measuring the effect of several other characteristics, not just the characteristic on which that

factor was sorted on.

The second feature that jumps out is the difference in variation. The two FF6 factors have

standard deviations (sds) of 3.04 and 4.71, respectively, while the corresponding sds of the slope

factors are 1.31 and 1.22, respectively, both substantially smaller. The difference in volatility is

particularly acute in the period around 1998-2002. The excess volatility of the differential factors

is also due to the uncontrolled dependence of each factor on other characteristics. During the

period when the volatility of the differential factors is high, the regressions discussed in Table 1

show that the returns that are used to make the SMB and MOM factors depend strongly on more

characteristics than in other months of the sample. The excess variation in the differential factors is
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Figure 1 The upper figure shows the slope factor of size, MVES, and the SMB factor in FF6 (in order to
make the former conform to what the latter represents, minus of the former factor is plotted); the lower figure
shows the slope factor of 12-month momentum, MOM12MS, and the MOM factor in FF6. The differential
factors are more noisy due to the fact that the differential factors are not pure-play. The returns on which
these factors are constructed also depend on excluded characteristics, but, since these are uncontrolled, the
combined variation in all of those omitted characteristics produces excess volatility.
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thus reflecting the combined variation in all of those (uncontrolled for) correlated characteristics.

Stated yet another way, this excess noise stems from dependence on a time-varying unknown

number of other characteristics that cannot even be fully identified. Ultimately, as will show below,

this affects the ability of these factors to price the cross-section.

3 Asset pricing with slope factors

3.1 Motivation

It is our contention that asset pricing with slope factors has the potential to substantially enhance

our understanding of the cross-section of expected returns. To see why this might be the case, let

x: k×1, denote the long-short risk factors, the factors that are in the SDF. Also let E[x] = µx and

Var[x] =Ωx. Now consider the SDF that underpins linear asset pricing models

m = 1−λ′
xΩ

−1
x (x−µx), (5)

where the first term is E[m] and λx is the factor risk premium. Under the SDF pricing restriction

E[mx] = 0 (6)

one gets that λx =µx which identifies λx. Now suppose that r are the excess returns on a vector of

traded assets in the cross-section. Again, given the SDF, these returns are subject to the restrictions

E[mr] = 0 (7)
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which on substituting for m and taking expectations leads to unconditional risk premium of r

E[r] =ΩrxΩx
−1λx (8)

where Ωrx is the covariance between r and x. Now think of this as the true risk premium and

now suppose that holding Ωrx and λx constant, Ωx increases (in the sense that the new covariance

matrix minus the original covariance matrix is positive semi-definite). Then from the fact that the

inverse of the original covariance minus the inverse of the new, higher covariance matrix is positive

semi-definite, it follows that the new risk premium is smaller than the original (true risk premium),

if not element-by-element, at least in the usual Euclidean vector norm. Thus, a larger Ωx leads to a

smaller risk premium relative to the true risk premium. Thus, when the conditional version of the

risk premium model

r =Bx+u (9)

is estimated, one gets a biased estimate of B and, hence, a biased estimate of the risk premium,

which shows up as mispricing.

The other problem with larger variability of factors is that it hinders discovery of the true risk

factors from the data and increases the possibility that the risk factors identified from the data are

incorrect, or put another way, increases the possibility that the SDF is misspecified. Due to this,

once again, one would expect that there would be an increase in mispricing of the cross-section.

3.2 Slope factor model discovery

To realize the potential of slope factors, we turn to the question of how to screen the market plus

fifty factors for inclusion in an asset pricing model (equivalently, for inclusion in the SDF). It is
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not possible to directly apply the recent approach of Chib and Zeng (2020) because the number of

models that would need to be compared as part of that approach would be 251 − 1, which would

be too large to handle. Instead, we discover our new asset pricing model by a methodology that

combines the methodologies in Kozak et al. (2020) and Chib and Zeng (2020). This combined

methodology is novel in that it does joint full Bayesian inference on all parameters (thus advancing

on the former paper) and handles a large initial pool of factors (thus advancing on the latter).

We employ a three-step discovery process that is motivated by machine learning precepts.

At the outset, we start by being agnostic about which factors are in the SDF, but we discipline

our search by injecting the implied pricing restrictions (that the mean is equal to the factor risk

premium), regularizing prior information, and a high threshold for inclusion in the SDF. We then

use a Bayesian method to derive the marginal posterior distributions of the SDF coefficients. We

use these posterior distributions to determine which factor risks are strongly supported by the data.

Then, in the second step, to mitigate any problem of false-positives, we apply the model scan

methodology of Chib and Zeng (2020) to this subset of potential risk factors to find the best asset

pricing model. Finally, in the third step, we reconstruct the factors by purging them of the influence

of the included important characteristics, and not also of the characteristics that were found to be

not important.

As we show below, the model we discover is different from others in the literature. This is

partly because we have searched broadly for useful factors, in the manner of machine learning

methods. It is also partly because, as shown above, slope factors are just different from differential

factors. What may be true for a particular differential factor (that is present or not present in the

SDF) need not be true for the corresponding slope factor.

To keep the focus on the bigger picture (that concerning the usefulness of this new asset pricing
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model), we only briefly sketch the methodology. An implementation of the approach is available

in a user-friendly R package. The user just has to supply the data. The package takes that data,

calculates the prior from a training sample, implements the steps below and outputs the best model.

Step 1

Let ft consist of the market factor plus the fifty constructed slope factors. An agnostic starting

point is to suppose that ft is in the SDF, estimate a model for ft under the pricing restrictions

E(ft) ≜ µ f = λ f , the factor risk premia, and let the data refine the initial assumption about the

risk factors. With this in mind, we begin our analysis by estimating the model

ft
(51×1)

= λ f
(51×1)

+ εt
(51×1)

where we have underset the dimensions of the variables below the variables. Given what we know

about factors, we make the (safe) assumption that the errors are independently distributed over

time. To protect against thick tails, however, (see the discussion surrounding Table 2) we adopt the

assumption that the distribution of the errors is multivariate student-t with ν degrees of freedom,

mean 0 and covariance matrix Ω f . We fix the value of ν to six (the best value of ν from comparing

models with ν ranging over the values from three to seven), which leads to a distribution with

much thicker tails than the Gaussian. The key parameter of interest in this model is the SDF

loading vector

b f =Ω−1
f λ f

Note that we use the convention of subscripting the parameters according to variable on the LHS

of the model.
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One can use the latter definition to express the factor risk premia as λ f = Ω fb f and then

express the factors as ft = Ω fb f + εt , as in Kozak et al. (2020), where this model is estimated

by regularized maximum likelihood, but under a Gaussian assumption on the error and under the

assumption that Ω f is known. This parameterization is problematic, however, if Ω f is unknown

since in that case the covariance matrix that must be estimated appears in both the mean and

the distribution of the noise. Nonetheless, it is important to see this connection between the two

parameterizations.

Let dataT = (f1, ...,fT ) denote the sample data and let p(dataT |λ f ,Ω f )) denote the likelihood

function (a product of of multivariate-t densities). Also let π(λ f ,Ω f ) denote the prior. We adopt

the prior of Chib et al. (2020) and fix the hyperparameters (the parameters of the prior) in a training

sample, a pragmatic, black-box approach that is highly recommended in situations with a large

number of hyperparameters. Up to a normalizing constant, the posterior density, π(λ f ,Ω f |dataT ),

given by the product of the likelihood and the prior, is not a recognizable density, but is amenable

to straightforward simulation by MCMC methods (Chib and Greenberg, 1996). The output of the

simulation is a sample of draws,

{(λ(1)
f ,Ω

(1)
f ), ...,(λ

(M)
f ,Ω

(M)
f )} (10)

from the posterior distribution, where, as a default, M is say 20,000. These are the draws

that are retained following an ignored burn-in of 1000 cycles. The next step is the point-wise

transformation of the the draws into b f , resulting in the sample

{Ω(1)−1
f λ

(1)
f , ...,Ω

(M)−1
f λ

(M)
f } (11)

From Chib (2001), for example, we know that this is automatically a sample from π(b f |dataT ),
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and can be used to learn about b f .

We have found that we can do the preceding estimation efficiently. This is partly due to the

regularizing effects of the prior. The minimal correlation amongst the slope factors also helps.

This also means that our analysis on fifty one factors can be scaled up (if more characteristics were

available). In contrast, with differential factors a similar analysis, even with fifty one factors, is

more complex because of the higher correlation amongst the factors. Thus, in that case discovery

of the best model is not that straightforward, especially with the sample sizes one encounters in

practice.

The idea now is to infer which elements of b f are not zero. For this, we use the sample of draws

on b f to construct the posterior quantiles of each component of b f . We then declare a particular

component of b f to be non-zero if its Bayesian 0.99 credibility interval excludes 0. It is important

to set a high-bar at this stage to limit false-positives. In simulations with data generated to resemble

the actual data, we have found that the 0.99 threshold works well. In Figure 2, we report the

marginal 99% credibility intervals for each of the fifty one SDF coefficients. The intervals that

exclude zero are indicated in red.

One can observe that the data evidence is quite clear about which coefficients are non-zero.

This information helps us infer that, at the 99% posterior credibility level, the SDF coefficients of

the following 15 factors,

f∗ = {Mkt,AGRS,BASPREADS,BETAS,CFPS,EGRS,EPS, ILLS,

MOM1MS,MVES,RDS,ROAQS,SGRS,STD DOLVOLS,STD TURNS} (12)

are non-zero.
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Figure 2 Step 1: Posterior 99% credibility intervals of the SDF coefficients.
This figure presents posterior 99% credibility intervals of the SDF coefficients of Mkt and fifty slope factors
obtained from estimating the model ft = λ f +εt on monthly data from January 1989 to December 2020.
A normal-inverse Wishart prior was used and the MCMC simulation was run for 20,000 iterations beyond
a burn-in of 1000. The posterior sample of b f was obtained by applying the transformation Ω−1

f λ f to each
sampled parameter. The credibility intervals colored in red exclude zero. See Table 10 for acronyms.
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It is premature to stop at this point and think of these factors as the risk factors. Drawing

guidance from our simulations, we have found that the output of Step 1 can contain a few false-

positives, not many, because the high 0.99 threshold discourages false-positives. On the other

hand, the problem of false-negatives is almost not a problem because the 0.99 threshold is tight,

but generous enough, to allow all reasonable contending factors to come through. Therefore,

to enhance our discovery of risk-factors, we employ another step that is aimed at catching and

eliminating any false-positives.

Step 2

The idea behind this step is to exhaustively examine all subsets of f∗
t , with each subset a possible

set of risk factors. This is the strategy developed in Chib and Zeng (2020) where it is called model

scanning. In this methodology, f∗
t is split into a group x∗

t of factors that are in the SDF and a

complementary set of factors w∗
t that are priced by x∗, but are not in the SDF. The implied model

takes the form

x∗
t = λx +εt , (13)

w∗
t = Γx∗

t +ut , (14)

where the assumption is that the joint distribution of (x∗
t ,w

∗
t ) is multivariate student-t with ν = 6

degrees of freedom. Once again, in light of the thick tails of the factors, and to robustify the

procedure, it is important to conduct this analysis under a multivariate student-t assumption. There

are 32,767 possible ways of forming these splits. We estimate the model under each split, calculate

its marginal likelihood by the method of Chib (1995) (the marginal likelihood is the integral of the

likelihood over the prior of the parameters), and rank all the models according to the size of these
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marginal likelihoods. Because of the importance of this step, we have included a parallelized

implementation of this scanning procedure in the R package alluded to above.

We report the top ten models from the model scan in Table 4. Models appear in columns and

the factors in the rows. An entry of one in row i and column j of the table indicates that factor i is

in M j, the jth top ranked model.

One can process the information in this table in different ways. One way is to take the factors in

the top model as the best risk factors. According to the semiparametric asymptotic theory in Chib,

Shin, and Simoni (2018), the highest marginal likelihood model is the best model in the limit. In

finite samples, however, it is better to examine the top model and the models that are close to the

top model, and to select factors that are common to all those models. We define a model as being

close to the top model if its posterior odds, relative to the top model, is at least 1:7. The point is

that if a model has a posterior odds, relative to the top model, that is even smaller than 1:7, say 1:8,

then that model is just too distant to be considered an equal of the top model.

One can now, by elementary algebra, translate the 1:7 posterior odds ratio to the marginal

likelihood scale. From the definition of odds, a posterior odds of at least 1:7 means that the

posterior probability of the last included model, relative to the top model, has to be at least 0.125.

In other words, a model makes the cut if it has a posterior probability of 0.125 (or higher) in the

binary comparison with the top model. Equivalently, models that have a lower probability than

0.125 in this binary comparison are just too weak. Now we can convert this threshold probability

back into the log-marginal likelihood scale. Let data∗T = (f∗
1 , ...,f

∗
T ) denote the sample data on the

fifteen factors, and

m(data∗T |M j)

denote the marginal likelihood of the sample data under M j, the jth ranked model. Then, from
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Bayes theorem, under equal prior probabilities on M1 and M j, the posterior probability of M j is

equal to

Pr(M j|data∗T ) =
m(data∗T |M j)

m(data∗T |M j)+m(data∗T |M1)
(15)

=
1

1+ exp(d1 j)
(16)

where

d1 j = logm(data∗T |M1)− logm(data∗T |M j)

is the difference in log marginal likelihoods of the jth ranked model relative to the top ranked

model M1. On substituting 0.125 on the LHS and solving for d1 j we get the simple rule that a

model is close to the top model if d1 j ≤ 1.95, or, equivalently, on substituting for the definition of

d1 j, that

logm(data∗T |M j)≥ logm(data∗T |M1)−1.95

We now apply this log-marginal likelihood distance measure to the output given in Table 4. The

log-marginal likelihood of the top model is -5752.16, which on subtracting 1.95 gives the lower

limit of -5754.11 for inclusion in the set of nearby models. Reading across the last row, the last

model to make the cut is, therefore, M8. The idea next is to isolate the factors that are common to

the top model and the nearby models. These are the factors that are stable across the top model and

the nearby models. As can been seen from the table, there are eight such factors. Denoting them

as x, these are

x= {Mkt,BASPREADS,BETAS,EGRS,MOM1MS,MVES,RDS,ROAQS} (17)
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Table 4 Step 2: Top 10 models from a model scan of 32,767 models
This table shows the top 10 models from a model scan applied to the fifteen factors from Step 1
that have non-zero SDF coefficients at the 0.99 level. Each model in the scan is of the type given
in equations (13) and (14). The models are indicated by the columns M1 to M10. A one in row i
and column j of the table indicates that factor i is in the jth top model M j. Models are ranked by
log-marginal likelihoods computed by the method of Chib (1995). The set of nearby models to
the top model includes models up to the eighth. These are within 1.95 on the log-marginal
likelihood scale to the top model.

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Mkt 1 1 1 1 1 1 1 1 1 1
AGRS 1 1 1 1 1 0 1 1 1 1

BASPREADS 1 1 1 1 1 1 1 1 1 1
BETAS 1 1 1 1 1 1 1 1 1 1
CFPS 1 1 1 0 1 1 0 1 1 0
EGRS 1 1 1 1 1 1 1 1 1 1
EPS 1 1 1 1 0 1 1 1 0 0
ILLS 0 0 0 0 0 0 0 0 0 0

MOM1MS 1 1 1 1 1 1 1 1 1 1
MVES 1 1 1 1 1 1 1 1 1 1
RDS 1 1 1 1 1 1 1 1 1 1

ROAQS 1 1 1 1 1 1 1 1 1 1
SGRS 1 1 1 1 1 1 1 0 1 1

STD DOLVOLS 1 0 1 1 0 0 0 0 1 0
STD TURNS 0 1 1 0 1 1 1 1 0 1

Log-marg -5752.16 -5752.32 -5752.95 -5753.72 -5753.72 -5753.87 -5753.98 -5754.05 -5754.20 -5754.32

Thus, according to our discovery procedure, these risk-factors encode the SDF. Even though we

started with a high-dimensional model of the SDF, the outcome of the discovery process produces

a low-dimensional SDF. Henceforth, we refer to these risk factors and the implied linear asset

pricing model, as the CLPZ8 slope factor model.

Extensive simulations have verified that our approach to discovery is remarkably effective.

This is backed up by support from the pricing performance of the CLPZ8 model. For instance,

the pricing performance of these eight factors, relative to the thirteen factors in the top model, is

not materially different. In other words, using the thirteen factors versus the eight does not change

the pricing performance of the factors materially. This speaks to the fact that our approach of

constructing nearby models to the top model from the model scan, followed by considering factors
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that are common to those models, is effective. It produces a parsimonious model that prices as well

as the top model, a win-win outcome.

Step 3

We conclude the discovery process by reconstructing x. We do this by re-running cross-

sectional regressions of excess returns on the LHS, but now with only the underlying seven lagged

standardized characteristics on the right hand side. Specifically, we run the OLS regressions on

excess returns rit

rit = αit +β1tBASPREADit−1 +β2tBETAit−1+

β3tEGRit−1 +β4tMOM1Mit−1 +β5tMVEit−1 +β6tRDit−1 +β7tROAQit−1 + εit (18)

for each month t = 1,2, ...,T in our sample. The estimates of the slopes from these regressions are

the final characteristic based factors of our model, ie.,

(BASPREADS,t ,BETAS,t ,EGRS,t ,MOM1MS,t ,MVES,t ,RDS,t ,ROAQS,t)= (β̂1t , β̂2t , β̂3t , ..., β̂7t)

t = 1, ...,T (19)

The purpose of this reconstruction is to ensure that these seven factors are purged of the influence

of the included important characteristics, and not also of the characteristics that have been deemed

unimportant. This final refitting is a de-biasing procedure that is common in regression in other

contexts. Our experiments show that this final step improves the pricing performance of the factors.

As a side point, quite important for applications, is how easy it is to construct the factors that go into

our model. Nonetheless, to broaden accessibility, we have a website that provides these factors.
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This website which is linked to the web-page of the first author will be maintained and revised

going forward as new data become available.

It should be noted that although our discovery process is data-intensive, in the manner of

machine learning methods, the discovery process itself is grounded in finance. The decision rule

in Step 1 examines the posterior distributions of the SDF coefficients. The search in Step 2 is

grounded in the question of which subset of the factors best belongs in the SDF and is the best in

pricing the excluded factors. We believe that without this combination of data-intensive strategies

of machine learning methods with finance the search would lead to sub-optimal discoveries.

4 Understanding the CLPZ8 model

We now explain some aspects of this new model. First, we describe the economic dimensions

captured by the CLPZ8 slope risk factors. Second, we derive the posterior distributions of the

factor risk premia. Third, we examine the OOS realized returns on factor portfolios composed

of the CLPZ8 factors and compare those returns to factor portfolios made from the factors of the

current models. Finally, we infer the implied posterior distribution of the SDF for each month in

the sample and point to implications for pricing.

4.1 Economic dimension

The distinct economic dimensions captured by the factors in the CLPZ8 slope factor model: EGRS

captures investment risk; BASPREADS, BETAS, and MVES capture trading frictions; MOM1MS

incorporates momentum; RDS is related to intangibles, and ROAQS captures profitability. The

characteristics underlying these factors have been discussed in the literature as predictors of
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future expected returns. In some cases, differential factors of these characteristics have been

constructed. Regardless, this is the first time that these characteristics have been conceived in

terms of slope factors, and the first time that they have put together in one asset pricing model. It

bears emphasizing that the slope factor versions capture the partial correlation (correlation purged

off the influence of other characteristics) between a given characteristic and returns and these can

be quite different than what is captured by differential factors (essentially correlation between a

given characteristic and returns (without controlling for the effect of other characteritics on returns,

except size). Because of this fundamental difference, even the risk premia of a slope factor can have

a different sign than the risk premia of the corresponding differential factor. Thus, it is important to

interpret the slope factor correctly, as a long-short portfolio that is pure-play (purged of the effect

of other characteristics) in contrast to differential factors which are long-short portfolios without

the latter vital property.

Now we mention the first paper that discussed the characteristic underlying our factors.

• BASPREAD, which is based on the bid-ask spread, in Amihud and Mendelson (1986).

• BETA in Fama and MacBeth (1973).

• EGR, or annual percent change in book value of equity, in Richardson, Sloan, Soliman, and

Tuna (2005).

• MOM1M, the one-month momentum, in Jegadeesh and Titman (1993).

• MVE, or the size factor, in Banz (1981)

• RD, which is based on R&D spending, in Eberhart, Maxwell, and Siddique (2004).

• ROAQ, which is related to returns on assets, in Balakrishnan, Bartov, and Faurel (2010).
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4.2 Factor risk premia

A puzzling result noted in the literature is that the factor risk premia of factors in several of the

standard models are not significant. Interestingly, as we now show, this is not the case for the

CLPZ8 factors.

Commonly, the factor risk premia are estimated by the Fama-Macbeth procedure. Alterna-

tively, one can estimate the model

xt = λx +εt , t = 1,2, ...,T (20)

where xt is the vector of factors in the asset pricing model. In this way, one can learn about the λx

(the vector of risk premia) without involving any test assets. We estimate this model assuming that

εt
i.i.d.∼ MVT(0,Ωx,ν = 6), a multivariate student-t distribution with ν = 6 degrees of freedom. Note

that this is same model that we estimated in Step 1, but now the LHS consists only of the factors

that are in the SDF. Of course, the estimation algorithm is the same as before. Given sample data

on the market plus characteristics-based factors, dataT = (x1, ...,xT ), we use MCMC to sample

the joint posterior distribution π(λx,Ωx|dataT ) to get the draws

{(λ(1)
x ,Ω

(1)
x ), ...,(λ

(M)
x ,Ω

(M)
x )} (21)

where the draws on λx, by MCMC theory, are automatically from the marginal posterior

distribution of the factor risk premia. Inference on each component of λx can now be based

on component-by-component histograms and smoothed kernel density estimates constructed from

these draws.

These component-by-component marginal posterior distributions are reported in Figure 3.
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The posterior 0.025 and 0.975 quantiles are marked by blue crosses and the posterior means by

triangles. From looking at the (0.025,0.975) quantile intervals, six of the seven non-market risk

factors have significant factor risk premia, a rather dramatic result. Of the six with significant

risk premia, RDS and ROAQS have significant positive risk premia. Given that slope factors are

pure-play long-short portfolios based on the underlying characteristics, the positive factor risk

premia suggests that a strategy of going long on stocks with high R&D expenses and return on

assets, and going short on stocks with low values of these characteristics can be expected to earn

a positive return. Slope factors that have significant negative factor risk premia are BASPREADS,

EGRS,MOM1MS and MVES. The negative risk premia of these factors suggests that a strategy of

going short on stocks with high values of the underlying characteristics of these factors, and going

long with low values of the underlying characteristics, can be expected to earn a positive return.
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Figure 3 Marginal posterior distributions of the factor risk premia λx in the CLPZ8 model.
These are based on 20,000 MCMC draws, following a burn-in of 1000 draws, from fit-
ting the model xt = λx + εt , where xt is the vector consisting of the eight risk factors,
{Mktt ,BASPREADS,t ,BETAS,t ,EGRS,t ,MOM1MS,t ,MVES,t ,RDS,t ,ROAQS,t}, and the error is multivari-
ate student-t with ν = 6 degrees of freedom and covariance matrix Ωx. The Chib and Zeng (2020) training
sample-based Gaussian-inverse Wishart prior is used for the parameters. The posterior 0.025 and 0.975
quantiles are marked by blue crosses and the posterior means by triangles.

If we apply the same procedure to the factors of existing models, we get a different, contrasting

view. For instance, in the FF6 model of Fama and French (2018), two of the five non-market factors

have significant factor risk premia; in the q5 model of Hou, Mo, Xue, and Zhang (2021) two out

of the four are significant; and in the DHS Daniel, Hirshleifer, and Sun (2020) model, one out of
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two is significant. We show these results in Figures 4, 5 and 6. Thus, it is not a given that factors

generate significant risk premia. Six out of seven in the case of the CLPZ8 model is a standout.
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Figure 4 Marginal posterior distributions of the factor risk premia in the FF6 model. These are based
on 20,000 MCMC draws, following a burn-in of 1000 draws, from fitting the model xFF6,t = λFF6 +εFF6,t ,
where xFF6,t is the vector consisting of the six FF6 factors, and the error is multivariate student-t. The
posterior 0.025 and 0.975 quantiles are marked by blue crosses and the posterior means by triangles.
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Figure 5 Marginal posterior distributions of the factor risk premia in the q5 model. These are based on
20,000 MCMC draws, following a burn-in of 1000 draws, from fitting the model xq5,t = λq5 +εq5,t , where
xq5,t is the vector consisting of the five q5 factors, and the error is multivariate student-t. The posterior 0.025
and 0.975 quantiles are marked by blue crosses and the posterior means by triangles.

It is also worth highlighting that our slope factor, MVES, is able to revive the risk premium

associated with the size characteristic, which is believed to have weakened after the 1980s.

Indeed, neither SMB nor ME has a significant risk premium as can be seen from the posterior

distributions of these factors in Figures 4 and 5. But the latter are based on differential factors

for size, which as we have argued in this paper, incorporate the effect of other characteristics on

returns that are correlated with size, and do not tell the whole (or even correct) story. Purged

of those confounding effects, our slope factor MVES provides a more appropriate rendering of

the risk premium associated with size. Along these lines, Asness, Frazzini, Israel, Moskowitz,

and Pedersen (2018) also find that a significant size premium re-emerges after controlling for
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quality exposures, but their control for quality was ex-post, taking the standard SMB factor and

regressing it on various quality factors, while in our case the purging of the effect of confounding

characteristics is done at the time each factor is constructed (ie., ex-ante), automatically for a large

set of characteristics without needing any user intervention. This speaks to the fact that slope

factors are really useful objects for asset pricing. By taking full advantage of all that they offer,

we have been able to develop the CLPZ8 model in which six of the seven characteristics based

factors have significant risk premia, compelling evidence in favor of slope factors in general and

the CLPZ8 model in particular.
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Figure 6 Marginal posterior distributions of the factor risk premia in the DHS model. These are based on
20,000 MCMC draws, following a burn-in of 1000 draws, from fitting the model xDHS,t = λDHS +εDHS,t ,
where xDHS,t is the vector consisting of the three DHS factors, and the error is multivariate student-t. The
posterior 0.025 and 0.975 quantiles are marked by blue crosses and the posterior means by triangles.

4.3 Maximum Sharpe-ratio factor portfolio

The preceding discussion on the factor premia of the CLPZ8 factors (and that of the factor premia

in the other models) suggests that factor portfolios composed of the CLPZ8 factors are likely to

generate higher realized Sharpe-ratios (SRs) compared to factor portfolios made from the factors

of the other three models.
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Consider the following situation. Suppose that we are at a particular time t and we are given

data on the CLPZ8 factors up to that point, datat . We can use these data on the factors to find the

maximum SR factor portfolio. By the well known result, the weight vector of the portfolio is given

by

wt =
Ω̂−1

x,t λ̂x,t

i′Ω̂−1
x,t λ̂x,t

(22)

where λ̂x,t and Ω̂x,t are the sample estimates of the parameters given datat , and i is the sum vector

(vector of ones). We now go long or short on the corresponding factor according to the weights

in wt . We hold this factor portfolio for a certain number of periods into the future, say until time

t + s. Let the actual, ie., realized returns of the factors from t +1 to t + s be denoted by Xt+1:t+s, a

matrix of dimension 8×s. Then, the out-of-sample (OOS) realized return (rr) of the factor portfolio

constructed at time t is

rrt+1:t+s =X ′
t+1:t+swt (23)

and the realized Sharpe-ratio OOS is

SROOS,t+1:t+s =
mean(X ′

t+1:t+swt)

sd(X ′
t+1:t+swt)

(24)

We can then move t to t + s and make a new factor portfolio with datat+s, the data up to time t + s

and hold that portfolio for the next s periods. We can repeat this computation several times to see

if the results are robust to the choice of t. Then we can repeat the entire computation for other

sets of factors, say those in the FF6, q5 and DHS models to evaluate the difference in the realized

Sharpe-ratios out of sample across factor models.
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Table 5 Out-of-sample realized Sharpe-ratios: OOS realized Sharpe-ratios of buy and hold
tangency portfolios constructed from the CLPZ8, FF6, q5 and DHS factors
This table presents the OOS realized Sharpe-ratios of tangency portfolios constructed from the
CLPZ8, FF6, q5 and DHS factors. Last 60 means that the weights are computed for the data from
January 1989 to Dec 2015 and the OOS returns and SR are calculated over the last 60 months
spanning Jan 2016 to Dec 2020; last 48 months means that the weights are calculated given data
from Jan 1989 to Dec 2016 and the OOS realized returns and SR are over the period Jan 2017 to
Dec 2020. Each row expands the estimation window by 12 months and shrinks the OOS
evaluation window by 12 months. The realized returns on which the SR is calculated are
annualized percentages.

CLPZ8 FF6 q5 DHS

last 60 0.75 0.29 0.39 0.33
last 48 0.82 0.26 0.44 0.35
last 36 0.80 0.25 0.36 0.33
last 24 1.01 0.37 0.25 0.38
last 12 1.09 0.29 0.27 0.18

We report results from these calculations in Table 5 for five different OOS periods, letting the

start date of the first OOS period be January 2016 (the first row of the table) which is then moved

up by 12 months in each succeeding row. The end date of the OOS period is December 2020 in

each row. Estimation of the weights is on an expanding window, starting in each case from January

1989 and ending the month prior to the start of the OOS period. We can see from the results that

the realized SR of the maximum SR portfolio constructed from the CLPZ8 factors is roughly three

times larger than those from the FF6, q5 and DHS factors, likely due to the fact that seven out of

eight factors in the CLPZ8 model earn a significant factor risk premia.

4.4 Volatility of SDF

We now probe an aspect of the CLPZ8 model (and of the other models) by asking a question that

is rarely asked in practice. What is the SDF that underpins the CLPZ8 model? More specifically,
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what does the data say about the SDF of the CLPZ8 model, and what does that tell us about

this model relative to the other three models? To answer this question, we calculate the posterior

distribution of the underlying SDF of the CLPZ8 model for every month t in the sample, and

we do this for each of the other three models. While it is possible to examine these posterior

distributions in many ways, we focus on the inferred volatility of the underlying SDF as this has

direct implications for pricing, as we discuss in the next section.

To learn about the SDF, given the data, we proceed as follows. Consider the CLPZ8 model, for

example. The SDF that underpins this model at time t is

mt = 1−λ′
xΩ

−1
x (xt−µx), t = 1, ...,T

We can think of this object, given the data on the factors, as a function of the parameters λx and

Ωx (µx =λx). This means that by the usual Bayesian/MCMC arguments, we can get the posterior

distribution of mt by evaluating mt point wise as

m(g)
t = 1−λ

(g)′
x Ω

(g)−1
x (xt−µ

(g)
x ), g = 1,2, ...,M, t = 1, ...,T

where

(λ
(g)
x ,Ω

(g)
x )∼ π(λx,Ωx|dataT ), g = 1,2, ...,M

are the draws on the parameters from estimating the model xt = λx + εt , εt
i.i.d.∼ MVT(0,Ωx,ν),

t = 1,2, ...,T With these M samples on mt , t = 1, ...,T , we can get the posterior mean of mt and

the posterior sd of mt . We can make a time series plot of these posterior means and, if necessary,

superimpose plus-minus 2×sd bands. We then repeat exactly the same computations for the FF6,

q5 and DHS models.
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We plot the results in Figure 7. Each panel of this plot contains the posterior mean of

mt underlying the FF6, q5 and DHS models. For easy comparison, the posterior mean of mt

underlying the CLPZ8 model is included in each panel. The higher variability of the latter is quite

evident. We also take the mean of the mt over months and the mean of the monthly sds to capture

the over variability. These are summarized in Table 6. It is apparent that the underlying SDF of the

CLPZ8 model has much higher variability while the variability of the SDF of the other three models

is roughly the same. This is perhaps the first asset pricing model with such a starkly different SDF

volatility. This difference in variability has consequences for the pricing of the cross-section, as

we now discuss.
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Figure 7 Posterior mean of mt = 1−λ′
xΩ

−1
x (xt−µx), by month, underlying each asset pricing model.

This figure presents E(mt |dataT ), by month, where dataT is the sample data that runs from January 1989
to December 2020. The posterior mean of the mt underlying the CLPZ8 model is included in red in each
plot to show the difference in variability. The shaded area indicate the NBER classified recession periods:
August 1990 - March 1991, April 2001 - November 2001, January 2008 - June 2009, and February 2020 -
December 2020.
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Table 6 Overall mean and sd of the SDF underlying each asset pricing model, January 1989 -
December 2020

CLPZ8 FF6 q5 DHS

mean 1.002 1.017 0.996 0.995
sd 0.898 0.333 0.486 0.363

5 Pricing performance

We now consider an all important question: Does the CLPZ8 model, and the slope factors on which

it is based, improve on the pricing of the cross-section? To price the cross-section, a more variable

SDF is better. For intuition about this, suppose that the SDF were constant. In that case, pricing

based on such an SDF would be vacuous. This intuition carries over in comparing SDFs. One with

limited variability should price worse than an SDF with more variability.

This is really just an implication of the Hansen-Jagannathan bound on the volatility of the SDF

which says that
sd(m)

E(m)
≥ E(ri)

sd(ri)
, i = 1,2, ...,n, (25)

where ri is the excess return of the ith asset, i = 1,2, ...,n, and, since each asset in the cross-section

generates a different lower bound, the LHS has to exceed the maximum of the Sharpe-ratios of all

n assets in the cross-section. Assuming that E(m) = 1, this means that the volatility of the SDF

has to be larger than the maximum of the Sharpe-ratios in the cross-section. Thus, more variable

SDFs are more likely to satisfy this bound (and therefore do better pricing) than less variable SDFs

(which, therefore, would do worse pricing). As stated by Cochrane (2009, pg. 93), “...we need

very volatile discount factors with a mean near one to understand stock returns.”
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This implication is not easy to check out if the volatility of the SDFs of different models is

about the same, as is the case with the FF6, q5 and DHS models, but we now have a model

that has a much higher SDF volatility. Thus, on theoretical grounds alone we would expect the

CLPZ8 model to do better pricing than the three other models. The empirical analysis supports

this theoretical contention. To be as comprehensive as possible, we consider the pricing question

on a large collection of assets. We split the analysis into two parts. First, we ask if the CLPZ8

slope factor model can price the factors in the FF6, q5 and DHS models. If it can, then that means

that the CLPZ8 model subsumes these other models. As part of this question we also examine the

question in the reverse direction. Can the FF6, q5 and DHS models price the factors in the CLPZ8

model?

In the second part of our analysis we consider a large collection of test assets, consisting of

1225 portfolios, 1480 ETFs and 6024 stocks. On this large collection of test assets we provide the

pricing performance of the CLPZ8 slope factor model in relation to the FF6, q5 and DHS models.

Our results, which we document in this section, show that the CLPZ8 model provides a sharper

rendering of the risks that are embedded in the cross-section of returns than any of these existing

models, in line with the intuition coming from the difference in variability of the SDFs.

5.1 Pricing methodology

We begin by casting the familiar pricing question into Bayesian terms. Consider the CLPZ8 model

(exactly the same formulation applies to other models with the CLPZ8 factors replaced by the

factors in those models). Let the excess return of a factor or a test asset i be denoted by ri. Then,
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the question of whether this excess return is priced amounts to a comparison of the two models

M0 : rit = β1iMktt +β2iBASPREADS,t +β3iBETAS,t+

β4iEGRS,t +β5iMOM1MS,t +β6iMVES,t +β7iRDS,t +β8iROAQS,t + εit , t ≤ T (26)

versus the model

M1 : rit = α +β1iMktt +β2iBASPREADS,t +β3iBETAS,t+

β4iEGRS,t +β5iMOM1MS,t +β6iMVES,t +β7iRDS,t +β8iROAQS,t + εit , t ≤ T (27)

In the non-Bayesian approach, one estimates M1 and concludes that the ri is not priced if the

test of the null of correct pricing, i.e., α = 0 is rejected. In this approach, one can reject the null,

but not accept the null that the asset is priced. For example, in a t-test, if the value of the t-statistic

is less than the threshold, one cannot conclude that the premium is priced.

In the Bayesian formulation, however, which goes back to Jeffreys (1961), the two models are

treated symmetrically. One estimates both models to obtain evidence about pricing versus non-

pricing. This evidence is summarized by the posterior probability Pr(M0|data) of (say) M0. Then,

according to Jeffreys scale if the posterior odds of M0 vs M1 exceeds 3.15:1 then we conclude that

the data evidence strongly prefers M0 and we claim that the asset is priced. In fact, if one sees even

a posterior odds in favor of pricing of at least 2:1, that is compelling evidence of pricing because

the models differ by just one parameter. By the algebra discussed above in connection with nearby

models, the 2:1 and 3.15:1 rules imply that one can claim correct pricing if d01 (the difference

in log-marginal likelihoods of M0 and M1) exceeds 0.69 and 1.15, respectively, and mispricing

otherwise.
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We estimate these two models for every factor and every test asset. We assume that the noise

term εi is Gaussian and employ a normal-inverse Gamma prior on the parameters of these models.

The hyperparameters of these prior distributions are fixed by a training sample approach. This

training sample consists of the first 15% of the sample.2

5.2 Does CLPZ8 price existing risk factors?

Before going forward, we examine if the CLPZ8 factors can price the risk factors of the FF6, q5

and DHS models (we ignore the market factor from this question because it is common to all the

models). To answer this question, we apply the pricing methodology just described, putting each

FF6, q5 and DHS factor on the LHS of the regression and the CLPZ8 factors on the RHS. We

then fit the models without and with an intercept and calculate d01. In addition, we also estimate

the model with an intercept by OLS and calculate α̂ , the OLS estimate of the intercept, and the

associated absolute value of the t-statistic.

The results are given in Table 7. If one looks at the last column of the table, which reports d01,

one sees that d01 exceeds 0.69 for four of the five FF6 factors, all the q5 factors, except rEG, and

for FIN in the DHS model. Reading across, one sees that whenever d01 is greater than 0.69, the |t|

statistic in that row is small, and when d01 < 0.69, the |t| statistic in that row is large. Since one

gets the same conclusion from either perspective, henceforth, we will limit ourselves to looking at

the evidence summarized in the d01 column. Thus, the evidence shows that eight out of the eleven

factors can be priced by the CLPZ8 model, strong necessary evidence in favor of the CLPZ8 model.

2If the sample size of a certain stock is small, less than 100 (as in the case of some small stocks), we use the first
40% of the data as a training sample. If the available sample size is between 100 and 150, we use the first 30% of the
sample as a training sample. When the sample size exceeds 150, the most common case, we deploy the first 15% of
the data to form the training sample prior.
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Table 7 Pricing test: FF6, q5 and DHS factors as test assets on the LHS and the CLPZ8 factors
on the RHS
This table presents the OLS pricing error α̂ and the absolute value of the associated t-statistics in
regressions with each FF6, q5 and DHS risk factors on the LHS and the CLPZ8 factors on the
RHS. The last column has d01, the log-marginal likelihood difference of the same regressions
without and with an intercept. If d01 > 0.69 (indicated in bold) then the conclusion is that the
posterior odds in favor of pricing is at least 2:1. The data are from January 1989 to December
2020.

CLPZ8

α̂ |tα | d01

SMB 0.09 0.57 1.10
HML -0.24 1.37 0.29
RMW -0.07 0.57 1.49
CMA 0.16 1.27 2.02
MOM 0.53 1.98 0.90
rME -0.01 0.06 1.25
rIA 0.17 1.37 2.06

rROE 0.05 0.37 1.70
rEG 0.45 3.98 -2.22

PEAD 0.59 4.58 -4.18
FIN 0.20 1.18 1.94

We also ask the pricing question in the reverse direction. How many of the CLPZ8 factors can

be priced by the FF6, q5 and DHS models? The results appear in Table 8 where the results with

the FF6 factors as the independent variables are in the first three columns, those for the q5 factors

as the independent variables are in the middle three columns, and those for the DHS factors as the

independent variables are in the last three columns.
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Table 8 Pricing test: CLPZ8 factors as test assets on the LHS and (separately) the FF6, q5 and
DHS factors on the RHS
This table presents the OLS pricing error α̂ and the absolute value of the associated t-statistics in
regressions with each CLPZ8 factors on the LHS and the factors of the FF6 (first three columns),
q5 (the next three) and DHS (last three) models on the RHS. The columns labeled d01 contains
the log-marginal likelihood difference of the same regressions without and with an intercept. If
d01 > 0.69 (indicated in bold), then the conclusion is that the posterior odds in favor of pricing is
at least 2:1. The data are from January 1989 to December 2020.

FF6 q5 DHS

α̂ |t| d01 α̂ |t| d01 α̂ |t| d01
BASPREADS 0.02 0.25 2.48 0.08 0.86 2.43 0.04 0.45 4.21

BETAS 0.01 0.15 1.66 0.01 0.15 1.58 0.10 1.49 2.49
EGRS -0.12 4.38 -5.83 -0.10 3.39 -2.03 -0.12 4.04 -4.19

MOM1MS -0.54 8.20 -19.44 -0.53 7.05 -14.04 -0.59 8.45 -20.32
MVES -0.35 5.56 -11.38 -0.37 5.35 -11.62 -0.38 5.13 -7.41
RDS 0.22 7.58 -23.07 0.18 5.23 -10.48 0.24 7.84 -25.07

ROAQS 0.16 3.33 -0.88 0.18 3.34 -2.42 0.15 2.96 -1.81

Going down the d01 columns, one sees that d01 > 0.69 only for BASPREADS and BETAS. That

is, each model is only able to price two of the seven CLPZ8 risk factors, and that the two factors

that can be priced by each model are the same. This is already rather remarkable evidence that the

CLPZ8 factors are capturing risks that are completely missed by these existing models. Ultimately,

this has to do with the fact that the factors in the FF6, q5 and DHS models are differential factors,

that were deemed risk factors by looking at differential factors, and that the universe of differential

factors, as we have shown above, give a coarse and incomplete understanding of the risks stemming

from the different characteristics. Thus, perhaps it is not surprising that the end-product would

leave risks on the table undetected. Not only is the CLPZ8 model based on slope factors, but it is

a model that was inferred from a large pool of such factors, and by spreading the net wide, in the

manner of machine learning methods, it captures risks that were not on the horizon of these other

models.
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5.3 CLPZ8 and pricing of portfolios, ETFs and stocks

Another dimension to pricing is how well the CLPZ8 model can price portfolios, ETFs and stocks.

Once more, we benchmark the performance relative to the FF6, q5 and DHS models. For a broad

pricing test on portfolios, we consider testing assets that are portfolios constructed by us from our

sample data. In particular, for each of our 49 characteristics (excluding size), we construct 5× 5

sorts on size and characteristic, leading to 1225 (= 25× 49) value-weighted portfolios. We then

apply our pricing test to each of these LHS testing assets with, in turn, each set of risk factors on

the RHS. The results, given in the first two columns of Table 9, show that the CLPZ8 factor model

prices more of these portfolios than the FF6, q5 and DHS factor models. In particular, under the

at least 2:1 posterior odds threshold in favor of pricing criteria, the CLPZ8 model prices 1069 of

these portfolios, while the FF6, q5 and DHS models price 467, 467 and 440 of these portfolios,

respectively, a substantial difference in pricing ability. Under the even more demanding criteria, of

at least 3:1 posterior odds threshold in favor of pricing, the CLPZ8 prices 919 of these portfolios,

while the other three models price 337, 306 and 291 of these portfolios, respectively. The evidence

of outperformance is clear.
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Table 9 Pricing results on test assets: portfolios, ETFs and stocks

Portfolios ETFs Stocks

priced:not priced

model ↓ 2:1 3:1 2:1 3:1 2:1 3:1

CLPZ8 1069 919 976 698 4642 3447
FF6 467 337 870 561 4331 2891
q5 467 306 958 633 4411 3046

DHS 440 291 851 532 4115 2679

Number of priced portfolios, ETFs and stocks for each of the CLPZ8, FF6, q5 and DHS
models. LHS assets are the test assets; 1225 portfolios from 5× 5 sorts on size and 49
characteristics from our sample data; 1480 ETFs obtained from CRSP (sharecode 73) that
have at least 60 months of observation between January 1989 - December 2020; 6024
common stocks obtained from CRSP (sharecode 10 and 11) that have least 60 months of
observations within January 1989 - December 2020, financial firms, firms with negative
book equity and stocks with P/S lower than $5 are excluded. The number of priced assets
is reported for posterior odds of priced vs not priced of 2:1 and 3:1.

In the second part of this pricing evaluation, we consider as test assets a large collection of

equity ETFs. These assets are diversified portfolios that are traded, liquid, transparent, and cheap

to trade. As a result, the premium of these assets is likely to be determined by exposure to the

common non-diversifiable sources of risk manifested in the risk factors. With this in mind, we

collect data on 1480 ETFs from CRSP (sharecode 73) spanning the period February 1993 (the

earliest month for which data on ETFs is available) to December 2020. Within this time-span,

each of 1480 ETFs has at least least 60 months of data. Our pricing methodology applied to these

test assets shows that under the at least 2:1 posterior odds in favor of pricing criteria, the CLPZ8

model is able to price 976 ETFs, again substantially more than the existing asset pricing models.

We report the results in the middle two columns of Table 9.

Finally, we consider the pricing of a sample of 6024 stocks. While, in general, stocks can be

difficult to price because of the excess noise relative to portfolios, but they offer a demanding check
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for the pricing ability of any asset pricing model. We collect the excess returns data on our stock

from CRSP (sharecode 10 and 11). The sample period is from January 1989 to December 2020.

Once again, we ensure that we have least 60 months of observations within this time frame on any

given stock. Financial firms and firms with negative book equity are excluded. Stocks with prices

per share lower than $5 are also excluded. The results on pricing of these data are summarized

in the last two columns of Table 9. As can be seen from the table, the pricing performance of the

CLPZ8 factor model strictly dominates that of the other three models. Specifically, under the 2:1

criteria, the CLPZ8 factor model prices 4642 of these stocks, but the FF6, q5 and DHS models

manage to price 4331, 4411, 4115 stocks, respectively, again substantially fewer than the new

model.

6 Conclusion

In this paper we have demonstrated the benefits that accrue from using slope factors in asset pricing,

provided a new asset pricing model with slope factors, and shown that it outperforms existing

asset pricing models in all the dimensions that are used to evaluate asset pricing models. Slope

factors are long-short portfolios that directly connect to the underlying characteristics, purged of

the influence of other characteristics. In addition, constructing these slope factors in a simple

exercise in regression. Furthermore, the slope factors tend to be less noisy than differential factors

because of the pure-play long-short property. This, as we have shown, leads to a more variable

SDF, which in turn leads to an improved ability to price the cross-section. Thus, our case for slope

factors in asset pricing rests on a combination of theoretical arguments (less noisy factors and a

more variable SDF), and extensive empirical evidence involving a large collection of test assets,

including factors of current models.
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To complete our case for asset pricing with slope factors we provide in this paper the first asset

pricing model with slope factors, the CLPZ8 model, that is built from the ground-up starting with

a large representative group of fifty firm-level characteristics. We used a data intensive procedure,

motivated by machine learning precepts, to infer which factors are in the SDF. The result is a

parsimonious model that consists of the market factor plus seven slope factors, BASPREADS,

BETAS, EGRS, MOM1MS, MVES, RDS, ROAQS, of which seven earn a significant risk premium

(in significant contrast to the case of the factors in existing models). We show that existing models

are not able to price five of the seven characteristics based factors in this model, showing that

the CLPZ8 model contains risks that are relevant for asset pricing, but have been overlooked by

existing models.

We show that the CLPZ8 model outperforms the existing models in terms of the significance

of the risk premia of the factors; OOS Sharpe-ratios of tangency portfolios; pricing of the factors

in existing models; and pricing on a large collection of portfolios, ETF and stocks. The evidence

supports the new model on each of these dimensions and reinforces our contention that slope

factors should be the basis for tackling and unearthing the risks that are embedded in the cross-

section.

Data, software and code to reproduce the results in this paper are available on request.
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Table 10 The descriptive statistics of the 50 characteristics
This table presents acronym, full names, definition, and descriptive statistics of characteristics generated by the code
from Green et al. (2017). The min, mean, max, median, and standard deviation are for the characteristics across firms
and months. The data are from January 1989 to December 2020.

Acronym Firm Definition Min Mean Max Median Stdcharacteristics
acc Working capital ac-

cruals
Annual income before extraordinary items (ib) minus
operating cash flows (oancf) divided by average total assets
(at); if oancf is missing then set to change in act - change
in che - change in lct + change in dlc + change in txp-dp

-1.022 -0.045 0.5 -0.055 0.109

age # years since first
Compustat coverage

Number of years since first Compustat coverage 1 13 58 16.653 12.94

agr Asset growth Annual percent change in total assets (at) -0.685 0.067 6.062 0.148 0.419
baspread Bid-ask spread Monthly average of daily bid-ask spread divided by average

of daily spread
0 0.035 0.901 0.048 0.051

beta Beta Estimated market beta from weekly returns and equal
weighted market returns for 3 years ending month t-1 with
at least 52 weeks of returns

-0.742 0.992 3.937 1.068 0.666

bm Book-to-market Book value of equity (ceq) divided by end of fiscal-year-
end market capitalization

-2.346 0.531 7.644 0.651 0.605

cash Cash holdings Cash and cash equivalents divided by average total assets -0.079 0.077 0.978 0.161 0.204
cashdebt Cash flow to debt Earnings before depreciation and extraordinary items

(ib+dp) divided by avg. total liabilities (lt)
-99.683 0.111 2.176 -0.015 1.245

cashpr Cash productivity Fiscal-year-end market capitalization plus long-term debt
(dltt) minus total assets (at) divided by cash and equivalents
(che)

-520.623 -0.072 600.277 -1.224 55.49

cfp Cash flow to price
ratio

Operating cash flows divided by fiscal-year-end market
capitalization

-2.797 0.075 2.623 0.074 0.235

chatoia Industry-adjusted
change in asset
turnover

2-digit SIC - fiscal-year mean-adjusted change in sales
(sale) divided by average total assets (at)

-1.429 0.001 1.194 -0.003 0.216

chcsho Chane in shares out-
standing

Annual percent change in shares outstanding (csho) -0.891 0.008 2.576 0.1 0.298

chmpia Industry-adjusted
change in profit
margin

Industry-adjusted change in number of employees -24.162 -0.077 3.502 -0.151 0.796

convind Convertible debt indi-
cator

An indicator equal to 1 if company has convertible debt
obligations

0 0 1 0.114 0.318

depr Depreciation/PP&E Depreciation divided by PP&E -0.984 0.188 6.703 0.307 0.432
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Table 10 The descriptive statistics of the 50 characteristics

Acronym Firm Definition Min Mean Max Median Stdcharacteristics
dy Dividend to price Total dividends (dvt) divided by market capitalization at

fiscal-year-end
-6.122 0 0.35 0.014 0.033

egr Growth in common
shareholder equity

Annual percent change in book value of equity (ceq) -3.837 0.072 8.286 0.134 0.699

ep Earnings to price Annual income before extraordinary items (ib) divided by
end of fiscal-year market cap

-7.523 0.043 0.437 -0.038 0.345

gma Gross profitability Revenues (revt) minus cost of goods sold (cogs) divided by
lagged total assets (at)

-0.961 0.297 1.778 0.345 0.335

grcapx Growth in capital ex-
penditures

Percent change in capital expenditures from year t-2 to year
t

-13.886 0.225 61.947 0.91 3.294

herf Industry sales concen-
tration

2-digit SIC - fiscal-year sales concentration (sum of
squared percent of sales in industry for each company)

0.009 0.044 1 0.07 0.077

hire Employee growth rate Percent change in number of employees (emp) -0.711 0.027 3.973 0.088 0.323
idiovol Idiosyncratic return

volatility
Standard deviation of residuals of weekly returns on
weekly equal weighted market returns for 3 years prior to
month end

0 0.055 0.279 0.064 0.037

ill Illiquidity Average of daily (absolute return / dollar volume) 0 0 0.001 0 0
indmom Industry momentum Equal weighted average industry 12-month returns -0.761 0.112 3.641 0.138 0.284
invest Capital expenditures

and inventory
Annual change in gross property, plant, and equipment
(ppegt) + annual change in inventories (invt) all scaled by
lagged total assets (at)

-0.507 0.032 1.385 0.061 0.153

lev Leverage Total liabilities (lt) divided by fiscal-year-end market
capitalization

0 0.622 77.752 2.211 4.674

lgr Growth in long-term
debt

Annual percent change in total liabilities (lt) -0.758 0.069 9.612 0.229 0.727

mom12m 12-month momentum 11-month cumulative returns ending one month before
month end

-0.957 0.056 11.952 0.125 0.582

mom1m 1-month momentum 1-month cumulative return -0.721 0.002 2.167 0.011 0.153
mve Size Natural log of market capitalization at end of month t-1 2.357 12.313 19.018 12.414 2.257
nincr Number of earnings

increases
Number of consecutive quarters (up to eight quarters) with
an increase in earnings (ibq) over same quarter in the prior
year

0 1 8 0.989 1.326

operprof Operating profitability Revenue minus cost of goods sold - SG&A expense -
interest expense divided by lagged common shareholders’
equity

-8.828 0.614 13.119 0.783 1.201

pchgm pchsale % change in gross
margin - % change in
sales

Percent change in gross margin (sale-cogs) minus percent
change in sales (sale)

-12.26 -0.004 4.761 -0.07 0.843
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Table 10 The descriptive statistics of the 50 characteristics

Acronym Firm Definition Min Mean Max Median Stdcharacteristics
pricedelay Price delay The proportion of variation in weekly returns for 36 months

ending in month explained by 4 lags of weekly market
returns incremental to contemporaneous market return

-15.849 0.068 15.597 0.153 1.076

ps Financial statement
score

Sum of 9 indicator variables to form fundamental health
score

0 5 9 4.621 1.655

rd R&D An indicator variable equal to 1 if R&D expense as a
percentage of total assets has an increase greater than 5%

0 0 1 0.141 0.343

roaq Return on assets Income before extraordinary items (ibq) divided by one
quarter lagged total assets (atq)

-0.59 0.005 0.159 -0.004 0.055

roeq Quarterly return on
equity

Earnings before extraordinary items divided by lagged
common shareholders’ equity

-2.28 0.021 1.766 -0.001 0.154

roic Return on invested
capital

Annual earnings before interest and taxes (ebit) minus
nonoperating income (nopi) divided by non-cash enterprise
value (ceq+lt-che)

-23.554 0.059 1.005 -0.143 1.267

salecash Sales to cash Annual sales divided by cash and cash equivalents -300.275 7.889 2503.483 58.36 190.378
saleinv Sales to inventory Annual sales divided by total inventory -35.442 12.16 1031.216 34.889 72.929
salerec Sales to receivables Annual sales divided by accounts receivable -21796 5.949 210.006 11.472 70.916
sgr Sales growth Annual percent change in sales (sale) -0.936 0.086 8.5 0.171 0.522
sin Sin stocks An indicator variable equal to 1 if a company’s primary

industry classification is in smoke or tobacco, beer or
alcohol, or gaming

0 0 1 0.01 0.099

sp Sales to price Annual revenue (sale) divided by fiscal-year-end market
capitalization

-4.131 0.87 37.551 1.778 2.882

std dolvol Volatility of liquid-
ity (dollar trading vol-
ume)

Monthly standard deviation of daily dollar trading volume 0 0.708 2.783 0.813 0.427

std turn Volatility of liquidity
(share turnover)

Monthly standard deviation of daily share turnover 0 2.342 736.352 4.833 11.773

tang Debt capacity/firm
tangibility

Cash holdings + 0.715 * receivables +0.547 * inventory +
0.535 * PPE/ totl assets

0 0.525 0.982 0.52 0.162

tb Tax income to book
income

Tax income, calculated from current tax expense divided
by maximum federal tax rate, divided by income before
extraordinary items

-27.344 -0.048 15.362 -0.096 1.685
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