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Abstract

In this paper we develop an easily implemented Bayesian strategy for improved
forecasts of the market excess returns. This strategy relies on 1) the use of mul-
tiple predictors in the predictive regression; 2) zero lower bound constraints on
the Bayesian predictive mean (the mean marginalized over the parameters); and
3) conjugate prior distributions for smooth sequential updating and calculation
of needed posterior quantities. This strategy produces striking results in the pre-
diction of the market excess returns and outperforms the results from 8 other
predictive methods, such as univariate and model combined univariate predictive
regressions. We show that with a set of 11 common market return predictors used
in the literature, and for an investor with power utility, the utility gain from our
strategy exceeds that from the other predictive methods by a wide margin.

JEL classification: C11, C22, C53, G11, G12.

Keywords : Return prediction; Non-negative equity premium; Multiple regression; Bayesian
analysis

∗Corresponding author. Olin Business School, Washington University in St. Louis, Campus Box
1133, 1 Brookings Drive, St. Louis, MO 63130. e-mail: chib@wustl.edu.
†Olin Business School, Washington University in St. Louis, Campus Box 1133, 1 Brookings Drive,

St. Louis, MO 63130. zengxiaming@wustl.edu.

mailto:chib@wustl.edu
mailto:zengxiaming@wustl.edu


1 Introduction

The question - how should the equity premium be forecast? - has spawned a large liter-

ature in finance that has revealed the relevance of different predictors, the pros and cons

of working with univariate and multiple predictive regressions, and the value of different

forecasting techniques (such as model combined forecasting methods, frequentist and

Bayesian approaches). Despite much progress, few definitive strategies stand out. For

instance, in a wide-ranging study, Goyal and Welch (2008) show that, in out-of-sample

tests, univariate predictive regressions with many common predictors fail to outperform

a simple benchmark model where historical average excess returns are used as forecasts.

Goyal and Welch (2008) also show that a multiple predictive regression with a set of com-

monly used predictors does not outperform either the univariate predictive regressions or

the simple benchmark model in out-of-sample comparisons. Rapach, Strauss, and Zhou

(2010) show that a weighted average of point forecasts from individual univariate predic-

tive regressions is less volatile than point forecasts from a multiple predictive regression

and performs better out-of-sample, while Ludvigson and Ng (2007), Neely, Rapach, Tu,

and Zhou (2014), and Kelly and Pruitt (2013, 2015) discuss the performance of predic-

tive regressions with constructed factors, where the factors are constructed by principal

component methods, or other means.

In this paper, based on the insights gleaned from the preceding literature, we provide

a new, easily implemented, Bayesian strategy that produces strikingly improved forecasts

of market excess returns. This strategy relies on 1) the use of multiple predictors in the

predictive regression; 2) zero lower bound constraints on the Bayesian predictive mean

(the mean marginalized over the parameters); and 3) conjugate prior distributions for

smooth sequential updating and calculation of needed posterior quantities.

The motivation for enforcing the lower bound constraint comes from Merton (1980)

where it has been argued that “in estimating models of the expected market return,

the non-negativity restriction of the expected excess return should be explicitly included

as part of the specification.” In the empirical literature, this point of view has been

implemented in the frequentist context by Campbell and Thompson (2008) and Li and

Tsiakas (2015), where a negative equity premium forecast is truncated from below at

zero, and in the Bayesian context by Pettenuzzo, Timmermann, and Valkanov (2014),
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where the expected excess market return, conditioned on parameters, is constrained to

be non-negative for each time period in the sample. However, the demand that the lower

bound has to hold for each value of the parameters is very strong and, as a result, the

multiple predictive regression of market excess returns under such constraints is difficult

to estimate.

In our strategy we impose a weaker lower bound restriction, that the Bayesian pre-

dictive mean (the mean marginalized over the parameters) is non-negative. Because

these restrictions are weaker than restricting the predictive mean conditioned on the pa-

rameters, a multiple predictive regression for market excess returns become estimable.

In effect, under our constraints, the data can speak more loudly in the sense that the

constraints do not interfere with the prior-posterior updates if the constraints are intrin-

sically satisfied by the data. This is not true of the approach in Pettenuzzo et al. (2014)

where the posterior distribution is truncated by the constraints even if the predictive

mean is non-negative.

We apply our approach in an empirical study where the constrained multiple pre-

dictive regression model is specified with 11 common predictors, the log dividend-price

ratio, log earnings-price ratio, stock return volatility, book-to-market ratio, net equity

expansion, Treasury bill rate, long-term yield, long-term return, term spread, default

yield spread, default return spread, and inflation. The outcome variable is the market

excess return computed as the log returns on the S&P 500 index (including dividends)

minus the Treasury bill rate. The data frequency is monthly. We consider two samples

of data. The first sample, which we refer to as Sample 1, spans the period from January

1927 to December 2014, while the second sample, Sample 2, which is taken from Rapach,

Ringgenberg, and Zhou (2015), spans the period January 1973 to December 2014. We

use an initial portion of each sample (the training sample) to construct an objective prior

distribution of the parameters in the model. The model is then estimated sequentially

for another (middle) portion of the sample. Finally, forecasts are generated sequentially

for the remaining portion of the sample (the forecast sample). For instance, in the case

of Sample 2, the training sample period runs from January 1973 to December 1975,

the middle sample runs from January 1976 to December 1989 and the forecast sample

consists of the 300 month time span from January 1990 to December 2014.
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Our results show that the predictive likelihood (a measure of predictive performance

that takes account of the whole predictive distribution and not just its mean and vari-

ance) from our constrained multiple predictive regression strategy is higher than that

of other alternative predictive methods, including univariate and model combined pre-

dictive regressions, and regressions in which the non-negativity constraints are imposed

conditioned on the parameters. In addition, for an investor with power utility, in both

samples, the utility gain from our model and approach, relative to the historical average,

exceeds the gain from that of the various alternative techniques by a wide margin.

The remainder of the paper proceeds as follows. Section 2 develops our Bayesian

estimation approach for excess market return prediction with non-negativity constraints

on the predictive mean of excess returns. Section 3 describes the data we use in the em-

pirical study and presents the results. Section 4 concludes the paper. Finally, derivations

of results in the text are collected in the Appendix.

2 Market excess return prediction

2.1 The unconstrained case

We consider a predictive regression model of the market excess return that is given by

rτ+1 = z′τβ + σετ+1, τ = 1, 2, . . . , (2.1)

where rτ+1 is the market excess return at the end of the time interval (τ, τ + 1]; zτ is

a k > 1 dimensional vector that contains predictors that are available at time period τ ;

ετ+1 is a standard normal error term distributed identically and independently across

time, and θ = (β, σ > 0) are the parameters which are unknown.

Now suppose that we are given data Dt = {r1:t, z1:t}, where y1:t = (y1, ..., yt), and

the goal is to do inferences about rt+1. Clearly, conditioned on θ, the density of rt+1

given the past data is simply

p(rt+1|Dt,θ) = N (rt+1|z′tβ, σ2) (2.2)
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so that

E(rt+1|Dt,θ) = z′tβ (2.3)

is the mean conditioned on θ. In the Bayesian context, predictive inferences are based

on the predictive density, which is the density of rt+1 given the parameters marginalized

over the posterior distribution of the parameters. This marginalization ensures that the

uncertainty surrounding θ is properly accounted for in the predictions. Otherwise, one

would understate the risks perceived by investors, as discussed in, for example, Kandel

and Stambaugh (1996) and Barberis (2000). In particular, the Bayesian prediction

density of rt+1 is given by

p(rt+1|Dt) =

∫
θ

N (rt+1|z′tβ, σ2)π (β, σ|Dt) dβ dσ, (2.4)

where the posterior density by the sequential form of Bayes theorem is

π(β, σ|Dt) ∝ N (rt|z′t−1β, σ2)π (β, σ|Dt−1) , (2.5)

π (β, σ|Dt−1), the posterior distribution given Dt−1, is the prior distribution for period

t, and the predictive mean is

E(rt+1|Dt) = z′tE(β|Dt) (2.6)

For convenience, we set up our prior distribution of θ so that quantities in Eq. (2.5)

and Eq. (2.6) can be calculated analytically. In particular, suppose that π (β, σ|Dt−1) is

a normal-inverse-gamma type II distribution with parameters (β0,t−1,B0,t−1, ν0,t−1, δ0,t−1)

and density

NIGk,2(β, σ|β0,t−1,B0,t−1, ν0,t−1, δ0,t−1) = Nk(β|β0,t−1, σ
2B0,t−1)IG2

(
σ|ν0,t−1

2
,
δ0,t−1

2

)
,

(2.7)

where

IG2(σ|ν, δ) =
2δν

Γ(ν)
σ−2ν−1 exp(−δσ−2), σ > 0 (2.8)

We refer to this distribution as the normal-inverse-gamma type II distribution because it

arises from a standard normal-inverse-gamma distribution on (β, σ2) by transformation
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to (β, σ).

By conjugacy, the posterior distribution π (β, σ|Dt) is also a normal-inverse-gamma

type II distribution NIGk,2(β, σ|β0,t,B0,t, ν0,t, δ0,t) with the updated parameters given

by

ν0,t = ν0,t−1 + 1 (2.9)

B0,t = (B−10,t−1 + zt−1z
′
t−1)−1 (2.10)

β0,t = B0,t(B
−1
0,t−1β0,t + zt−1rt) (2.11)

δ0,t = δ0,t−1 + r2t + β′0,t−1B
−1
0,t−1β0,t−1 − β′0,tB−10,tβ0,t (2.12)

as derived in the Appendix. Then, a direct calculation performed in the Appendix shows

that the unrestricted predictive density

p(rt+1|Dt) =

∫
θ

N (rt+1|z′tβ, σ2)π (β, σ|Dt) dβ dσ (2.13)

is

p(rt+1|Dt) ∝

(
1 +

1

ν0,t

(rt+1 − z′tβ0,t)
2

δ0,t
ν0,t

(1 + z′tB0,tzt)

)− ν0,t+1

2

(2.14)

a student-t distribution with ν0,t degrees of freedom and mean

E(rt+1|Dt) = z′tβ0,t, (2.15)

which is, of course, different than z′tβ, the predictive mean conditional on θ.

2.2 Non-negativity constraints

As mentioned in the Introduction, Pettenuzzo et al. (2014) show how the non-negativity

constraint on E(rt+1|Dt,θ) = z′tβ can be imposed. In fact, Pettenuzzo et al. (2014) have

argued that one should impose the latter constraint for each time point τ , τ = 1, 2, ..., t,

in the sample. In other words, they impose the following constraints

E(rτ+1|Dτ ,θ) = z′τβ ≥ 0, τ = 1, . . . , t, (2.16)
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which leads to a posterior distribution proportional to

π (β, σ|Dt)
t∏

τ=1

I[z′τβ ≥ 0]

where I[·] is the indicator function. Thus, the restrictions truncate the support of the

unrestricted posterior distribution π (β, σ|Dt) at time t. As mentioned above, producing

a sample of draws from this truncated posterior raises several challenges. Many draws

from the untruncated posterior distribution π (β, σ|Dt) do not satisfy these constraints

and must be rejected. This problem gets more acute as t increases. In addition, the num-

ber of rejections generally also increase rapidly in models with more than one predictor

variable thus making it almost impossible to estimate multiple predictive regressions.

Instead, we pursue a different formulation of the constraint problem and impose the

(weaker) restrictions

E(rτ+1|Dτ ) = z′τβ0,τ ≥ 0, τ = 1, . . . , t (2.17)

These restrictions are less restrictive than the constraints in (2.16). To see this, note

that by the law of iterated expectation, E(rτ+1|Dτ ) = E[z′τβ] where the expectation

is over the distribution π (β, σ|Dt)
t∏

τ=1

I[z′τβ ≥ 0]. Thus, if z′τβ is non-negative, then

E(rτ+1|Dτ ) is also non-negative. On the other hand, if z′τβ0,τ is non-negative, then z′τβ

is not necessarily non-negative.

The restrictions in (2.17) require that each of the posterior distributions

π (β, σ|Dτ ) , τ = 1, 2, ..., t (2.18)

be such that the implied posterior means

β0,τ , τ = 1, 2, ..., t (2.19)

satisfy the sequence of constraints z′τβ0,τ ≥ 0, τ = 1, 2, ..., t. We have developed a rather

elegant solution to incorporating these constraints. The method is straightforward to

implement, even in the context of the multiple predictive regression, and produces rather

striking results in the out-of-sample prediction of market excess returns.
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2.3 Solution to problem

Our idea for solving the question just described is to adjust the posterior distribution

π(β, σ|Dτ ) such that under the adjusted (equivalently, corrected) posterior distribution

the implied posterior mean β0,τ satisfies the constraint z′τβ0,τ ≥ 0. The adjustment is

carried out in such a way that the corrected posterior distribution is as close as possible in

the Kullback-Leibler (K-L) distance (Kullback and Leibler, 1951) to the unrestricted one.

The rationale behind minimizing this distance is that information from the constraint

should already be in the unrestricted posterior and, therefore, the corrected posterior

should be the one that is closest to the unrestricted posterior as measured by the K-

L distance. Robertson, Tallman, and Whiteman (2005) use a similar (but different)

idea and modify the weights of draws from the predictive distribution in order that the

predictive distribution satisfies a set of equality constraints. In our strategy, however,

the posterior distribution is adjusted, rather than the predictive distribution. This is

not only computationally more straightforward but, because the adjusted posterior is

the prior for the next period, information about the lower bound constraint from the

current period is carried forward to future periods, thus leading to a solution that could

not be reproduced by adjusting the predictive distribution directly.

At the start of time t, let πc(β, σ|Dt−1) be the current normal-inverse-gamma type

II distributed posterior distribution given data Dt−1 as well as the non-negativity con-

straints that have been imposed up till time t − 1. Let πu(β, σ|Dt) denote the un-

restricted posterior distribution that emerges after we apply Bayes theorem on see-

ing the data (zt−1, rt) and using the updates from Eq. (2.10) to (2.12). Let the im-

plied posterior mean of this distribution be β0u,t. This may not satisfy the restriction

z′tβ0u,t ≥ 0. To incorporate this constraint, we find an adjusted posterior distribu-

tion πc(β, σ|Dt) with mean β0c,t that satisfies the constraint z′tβ0c,t ≥ 0. Because the

non-negativity constraints are on the implied posterior mean of β, the new posterior

distribution πc(β, σ|Dt) is assumed to be only different from πu(β, σ|Dt) in the mean of

β. If πu(β, σ|Dt) is NIGk,2(β, σ|β0u,t,B0,t, ν0,t, δ0,t) then πc(β, σ|Dt) is supposed to be

NIGk,2(β, σ|β0c,t,B0,t, ν0,t, δ0,t), differing only in the mean of β.

In the Appendix we show that the K-L divergence between the latter two distributions
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has a simple analytical form,

KL [πc(β, σ|Dt)||πu(β, σ|Dt)] =
ν0,t
2δ0,t

(β0c,t − β0u,t)
′B−10,t (β0c,t − β0u,t) (2.20)

Thus, the problem of minimizing the latter distance, subject to meeting the required

non-negativity constraint, reduces to the following optimization problem,

min
β0c,t

ν0,t
2δ0,t

(β0c,t − β0u,t)
′B−10,t (β0c,t − β0u,t) (P)

s.t. z′tβ0c,t ≥ 0

where the objective function is the K-L divergence between the corrected and unre-

stricted posterior distributions and the constraint is the non-negativity constraint on

the predictive mean of rt+1 under πc(β, σ|Dt).

The optimization problem (P) is a simple quadratic problem with a linear constraint

and has a closed-form solution.

Proposition 1 The solution to problem (P) is

β0c,t =

β0u,t if z′tβ0u,t ≥ 0,

β0u,t −
z′tβ0u,t

z′tB0,tzt
B0,tzt otherwise

(2.21)

Proof. See the Appendix.

Therefore, the predictive distribution of the market excess return with the constraint

imposed

pc(rt+1|Dt) =

∫
θ

N (rt+1|z′tβ, σ2)πc (β, σ|Dt) dβ dσ (2.22)

is

pc(rt+1|Dt) ∝

(
1 +

1

ν0,t

(rt+1 − z′tβ0c,t)
2

δ0,t
ν0,t

(1 + z′tB0,tzt)

)− ν0,t+1

2

(2.23)

a student-t distribution with ν0,t degrees of freedom and mean

Ec(rt+1|Dt) = z′tβ0c,t (2.24)
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Note that πc(β, σ|Dt) is identical to πu(β, σ|Dt) if z′tβ0u,t ≥ 0. Hence, in this ap-

proach one modifies the unrestricted posterior only when the non-negativity constraint

is violated. Note also that if the implied posterior mean from πu(β, σ|Dτ ) delivers non-

negative zτβ0u,τ for all time period τ in the sample, then no modifications occur at all

and predictive inferences correspond to the unrestricted case as discussed in Section 2.1.

Also note that since πc(β, σ|Dt) reflects all the information that is available at time t it

becomes the prior distribution for the next time period t+ 1, and the process described

above is applied anew.

Another thing worth noting is the similarity of our approach and the truncation

approach in Campbell and Thompson (2008) where the forecast of next period’s excess

return is truncated to zero when the OLS estimates deliver a negative forecast. If the

predictive mean is used as the point forecast of excess return for next period, then the

point forecast in our approach is also truncated to zero when πu(β, σ|Dt) generates a

negative predictive mean, because z′tβ0c,t = 0 when z′tβ0u,t < 0.

We now study the empirical performance of our approach. An R package for imple-

menting these calculations is available on request.

3 Empirical results

In this section, we first describe the data set we use and then report our empirical

findings.

3.1 Data

Our vector of predictors zτ consists of 11 variables that are commonly used in the

literature. They are selected from a pool of 14 predictors. These 14 predictors are those

predictors that are originally analyzed in the comprehensive study of Goyal and Welch

(2008) and are still available up till to year 2014. Three predictors, the log dividend

yield, log dividend-payout ratio and term spread, are omitted because they are perfectly

or almost perfectly correlated with the 11 predictors we use. This set of predictors has

also been used in many other studies of market return predictability, for example, Dangl

and Halling (2012), Neely et al. (2014), Rapach et al. (2015).
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The response variable is the market excess return computed as the log returns on the

S&P 500 index (including dividends) minus the Treasury bill rate. The data frequency

is monthly and spans the period from 1927:01 to 2014:12. Denote this data sample as

Sample 1 (1927:01-2014:12)1. It is one of the longest samples in the extant literature to

examine predictability of US equity premium.

In addition, Rapach et al. (2015) construct a new predictor, the short interest index

(SII), and show that the short interest is the best of the univariate predictors of the

market excess returns. Because of its superiority over other predictors, we also use the

short interest index to make a benchmark univariate predictive model. However, the

SII is only available from 1973:01 to 2014:12. Therefore, to relate our results to those

reported in Rapach et al. (2015), we also consider a shorter data sample that spans from

1973:01 to 2014:12 and denote it as Sample 2 (1973:01-2014:12)2. Note we do not include

the short interest index in zτ in the multiple predictive regression, however, because it

does not improve the performance of our constrained model. This is to be expected

because the performance of the short interest predictor by construction is not supposed

to benefit from a lower bound restriction.

The 11 predictors in our multiple predictive regression are

• Log dividend-price ratio (DP) is the difference between the log of a twelve-month

moving sum of dividends paid on the S&P 500 index and the log of stock prices

(S&P 500 index).

• Log earnings-price ratio (EP) is the difference between the log of a twelve-month

moving sum of earnings on the S&P 500 index and the log of stock prices.

• Excess stock return volatility (RVOL) uses a twelve-month moving standard devi-

ation estimator as in Mele (2007)3.

• Book-to-market ratio (BM) is the book-to-market value ratio for the Dow Jones

Industrial Average.

1All data variables are available from Amit Goyal’s webpage at http://www.hec.unil.ch/agoyal/
2We thank Matthew Ringgenberg for providing the short interest index data.
3Goyal and Welch (2008) use the sum of squared daily excess returns on the S&P 500 index to

measure stock return volatility. However, this measure produces a severe outlier in October of 1987,
while the moving standard deviation estimator avoids this problem. Therefore, Neely et al. (2014),
Rapach et al. (2015) suggest to use the latter variable. Here we follow their suggestion.
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• Net equity expansion (NTIS) is the ratio of a twelve-month moving sum of net

equity issues by NYSE-listed stocks to the total end-of-year market capitalization

of NYSE stocks.

• Treasury bill rate (TBL) is the interest rate on a secondary market rate of three-

month US treasury bills.

• Long-term yield (LTY) is the long-term government bond yield.

• Long-term return (LTR) is the return on long-term government bonds.

• Term spread (TMS) is the difference between the long-term yield and Treasury

bill rate.

• Default yield spread (DFY) is the difference between BAA-rated and AAA-rated

corporate bond yields.

• Default return spread (DFR) is the difference between returns on long-term cor-

porate bonds and returns on long-term government bonds.

• Inflation (INFL) is the Consumer Price Index for all urban consumers from the

Bureau of Labor Statistics, lagged by an extra month.

The other predictors that are not included in the multiple predictive regression but

are used in the alternative methods for comparisons are

• Dividend yield (DY) is the difference between the log of dividends and log of one

month-lagged prices.

• Dividend-payout ratio (DE) is the difference between the log of dividends and log

of earnings.

• Term spread (TMS) is the difference between the long-term yield and Treasury

bill rate.

• Short interest index (SII) is the standardized de-trended log of the equal-weighted

mean of all asset-level short interest data reported in Compustat.
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Table 1 reports the summary statistics for these data. As we can see from the table,

several predictors are highly persistent. According to Cochrane (2008), the imposition

of non-negativity constraints can be helpful in overcoming the problems that arise from

highly persistent predictors.

3.2 Prior analysis

We construct the prior distribution of the parameters on the basis of a training sample.

This is to ensure that our prior beliefs about the parameters are well founded and

objective. For Sample 1 (1927:01-2014:12), the training sample consists of the data from

1927:01 to 1929:12. Let r0 denote the vector of excess market returns from 1927:02

to 1929:12 and let Z0 denote the matrix of predictor variables zts from 1927:01 to

1929:11. Then, the prior distribution for the estimation that starts in month 1930:01 is

NIGk,2(β, σ|β0,0, B0,0, ν0,0, δ0,0) where

β0,0 = (Z ′0Z0)−1Z ′0r0, (3.1)

B0,0 = g(Z ′0Z0)−1, (3.2)

ν0,0 = 36, (3.3)

δ0,0 =
(r0 − Z0β0,0)′(r0 − Z0β0,0)(ν0,0 − 2)

34
, (3.4)

and g is a scaling factor that is model specific and given below. Johannes, Korteweg,

and Polson (2014) also use observations in training sample that spans from 1927 to 1929

to generate “objective” priors.

In the comparison with short interest index where we use Sample 2 (1973:01-2014:12),

the training sample also consists of data in the first three years, from 1973:01 to 1975:12.

3.3 Alternative methods

To better understand the performance of our constrained multiple predictive regression,

we compare our constrained multiple predictive regression with a range of alternative

methods proposed in the literature. To investigate the effects of constraints, we present

results of the unconstrained multiple predictive regression. To investigate the effects of

multiple predictors, we present results of the best univariate predictive regressions. We
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Table 1
Full sample summary statistics, 1927:01-2014:12

Mean Median Std. Min. Max. ρ(1)

rm (%) 0.50 0.95 5.49 −33.93 34.55 0.088

Predictors used in
the multiple
predictive
regression

DP −3.36 −3.33 0.46 −4.52 −1.87 0.991

EP −2.72 −2.78 0.42 −4.84 −1.77 0.986

RVOL 0.17 0.15 0.09 0.05 0.74 0.980

BM 0.58 0.55 0.27 0.12 2.03 0.985

NTIS 0.02 0.02 0.03 −0.06 0.18 0.979

TBL (%) 3.51 3.07 3.10 0.01 16.30 0.992

LTY (%) 5.21 4.30 2.79 1.82 14.82 0.996

LTR (%) 0.49 0.32 2.43 −11.24 15.23 0.042

DFY (%) 1.13 0.90 0.70 0.32 5.64 0.975

DFR (%) 0.03 0.05 1.35 −9.75 7.37 −0.129

INFL (%) 0.25 0.24 0.51 −2.08 5.74 0.567

Predictors not
used in the
multiple predictive
regression

DY −3.35 −3.32 0.46 −4.53 −1.91 0.991

DE −0.63 −0.62 0.33 −1.24 1.38 0.991

TMS (%) 1.71 1.76 1.32 −3.65 4.55 0.961

SII 0.00 −0.09 1.00 −2.28 2.94 0.950

The table displays monthly summary statistics for excess market return (rm, the log
return on the S&P 500 index in excess of the risk-free rate), 14 predictor variables from
Goyal and Welch (2008), and the predictor short interest index (SII) from Rapach et al.
(2015). DP is the log dividend-price ratio; EP is the log earning-price ratio; RVOL
is the excess market return volatility; BM is the book-to-market ratio; NTIS is net
equity expansion; TBL is three month Treasury bill interest rate; LTY is the long-term
government bond yield; LTR is the long-term government bond return; DFY is the
difference between Moody’s BAA- and AAA-rated corporate bond yields; DFR is the
long-term corporate bond return minus the long-term government bond return; INFL
is inflation calculated from CPI for all urban consumers; DY is the log dividend yield;
DE is the log dividend-payout ratio and TMS is the long-term government bond yield
minus the Treasury bill rate. For each variable, the time-series average (Mean), median
(Median), standard deviation (Std.), minimum (Min.), maximum (Max.), and first-order
autocorrelation (ρ(1)) are reported. The sample period is from 1927:01 to 2014:12, with
1056 observations in total. The summary statistics of SII are based on data from 1973:01
to 2014:12, the period for which these data are available.
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also present results from the other two prominent approaches of incorporating multiple

predictors, combination of forecasts and combination of predictors, to see if our method

is able to improve over the other existing methods that utilize multiple predictors. For

each alternative, we consider two cases, a case where no constraints are imposed and a

case where constraints are imposed conditioned on parameters, except for the multiple

predictive regression, which cannot be estimated with constraints imposed conditioned

on parameters.

In more detail, the predictive methods we consider are as follows.

Method 1: MPR-LB is the multiple predictive regression with the lower bound con-

straints, as developed in Section 2.3. The predictive factors in zτ are a constant

and the full set of 11 economic predictors described above.

Method 2: MPR-NLB is the multiple predictive regression with no lower bound con-

straints as developed in Section 2.1. zτ is the same as that in model MPR-LB and

contains a constant and 11 economic predictors.

Method 3: UPR-NLB is the univariate predictive regression with no lower bound

constraints. In Sample 1 (1927:01-2014:12), zτ contains a constant and one of

the 14 economic predictors. In Sample 2 (1973:01-2014:12), zτ contains a constant

and one of the 14 economic predictors or contains a constant and the short interest

index.

Method 4: UPR-LB-P is the univariate predictive regression with lower bound con-

straints imposed conditioned on parameters.

Method 5: UPR-MC-NLB has predictive distribution that is the equal-weighted av-

erage of predictive distributions from 14 univariate predictive regressions with no

lower bound constraints, each using one of the 14 economic predictors. The log

dividend yield, log dividend-payout ratio and term spread predictors are included

because the combination approach is unaffected by collinearity. The results are

little changed if we also incorporate the new predictor SII in Sample 2.

Method 6: UPR-MC-LB-P is the restricted version of UPR-MC-NLB. Each univari-

ate predictive regression is now estimated with lower bound constraints conditioned
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on parameters.

Method 7: UPR-PC-NLB is the univariate predictive regression with no lower bound

constraints, in which the predictor is the first principal component extracted from

the 14 economic predictors. Similar to the model combination approach used in

UPR-MC-NLB, the principal component is unaffected by the collinearity issue and

the results are little changed if we incorporate the new predictor SII in Sample 2.

Method 8: UPR-PC-NLB-P is the restricted version of UPR-PC-NLB. Now the

univariate predictive regression of the principal component regressor is estimated

with lower bound constraints conditioned on parameters.

Method 9: NoPred is the no-predictability benchmark and it is an unconstrained

predictive regression with zτ only containing a constant.

All the unconstrained methods, including MPR-NLB, UPR-NLB, UPR-MC-NLB,

UPR-PC-NLB, and NoPred, are estimated by the approach described in Section 2.1; and

all the methods with constraints imposed conditioned on parameters, including UPR-

LB-P, UPR-MC-LB-P, and UPR-PC-LB-P, are estimated as described in Pettenuzzo

et al. (2014).

The initial training sample-based prior distribution is selected as described in Section

3.2. The scaling factor g is 2 for multiple predictive regressions MPR-LB and MPR-NLB,

and 4 for all the univariate predictive regressions and the no-predictability benchmark

NoPred.

3.4 Out-of-sample performance

Goyal and Welch (2008) have shown that the out-of-sample performance of most eco-

nomic predictor variables is weak. Therefore, in this section, we examine the out-of-

sample performance of our constrained multiple predictive regression, MPR-LB. In this

analysis, we predict the market excess return by calculating for each t the Bayesian pre-

dictive density p(rt+1|Dt) in the unconstrained case and pc(rt+1|Dt) in the constrained

case, where, for comparability with existing literature, t + 1 runs from January 1947 to

December 2014 in Sample 1 (1927:01-2014:12) and runs from January 1990 to December
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2014 in Sample 2 (1973:01-2014:12). These 816/300 observations constitute the predic-

tion sample of Sample 1/Sample 2. For each time period in the prediction sample, we

evaluate the accuracy of the forecast and the financial gain that an investor can achieve

under the constrained multiple predictive regression.

We start by providing in Fig. 1 the means of the predictive densities from multiple

predictive regressions MPR-LB (solid line) and MPR-NLB (dashed line). The forecasts

from MPR-LB are, of course, always non-negative. In addition, forecasts from MPR-

LB are, in general, similar to those from MPR-NLB, except when the unconstrained

forecasts are negative.

Next we formally evaluate the statistical and economic performance of all the con-

tending predictive methods.

3.4.1 Statistical evaluation

We evaluate the statistical performance of the predictions by calculating the predictive

likelihood (see Chib and Greenberg, 1995, Geweke and Amisano, 2012), which is the

product of the predictive density evaluated at the realized values of the outcome. The

predictive likelihood (on the log-scale) is a natural metric in the Bayesian context and

uses information of the entire predictive distribution. As mentioned earlier, the one-

step-ahead predictive distribution is a student-t distribution. Therefore, in Sample 1

(1927:01-2014:12), the log predictive likelihood (LPL) over the prediction sample from

m = January 1947 to n = December 2014 is the sum of the one-step-ahead log predictive

likelihoods,

LPL(m,n) =
n−1∑

t=m−1

log f(rt+1|Dt) (3.5)

where f(rt+1|Dt) is p(rt+1|Dt) or pc(rt+1|Dt) from Eq. (2.14) and Eq. (2.23) depending

on whether we are considering the unconstrained or constrained case. For Sample 2

(1973:01-2014:12), the log predictive likelihood for the prediction sample is computed in

the sample way with m = January 1990 and n = December 2014.

Table 2 presents the predictive likelihood results for the constrained multiple pre-

dictive regression as well as other alternatives. The table reports the log predictive

likelihood ratio of each method against the no-predictability benchmark (NoPred). A
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Table 2
Out-of-sample predictive performance, log predictive likelihood ratio

Sample 1 (1927:01-2014:12) Sample 2 (1973:01-2014:12)

MPR-LB 26.31 9.07

MPR-NLB −9.25 −11.77

UPR-NLB 1.64 1.88

UPR-LB-P 1.34 0.69

UPR-MC-NLB 1.25 1.10

UPR-MC-LB-P −0.13 −0.21

UPR-PC-NLB 1.15 −0.84

UPR-PC-LB-P 0.93 −0.44

The table reports the log predictive likelihood ratio of each method against the no-
predictability benchmark. The second column reports the log predictive likelihood ratio
for Sample 1 (1927:01-2014:12) in the prediction sample 1947:01-2014:12, and the third
column reports the log predictive likelihood ratio for Sample 2 (1973:01-2014:12) in the
prediction sample 1990:01-2014:12. MPR-LB is the constrained multiple predictive re-
gression with 11 economic predictors. For descriptions of the predictors, see the notes to
Table 1. MPR-NLB is the unconstrained version of MPR-LB. UPR-NLB is the uncon-
strained univariate predictive regression with the highest predictive likelihood among
all 14/15 single predictors in Sample 1/Sample 2. In Sample 1, it is predictor RVOL,
whereas it is predictor SII in Sample 2. UPR-LB-P is the univariate predictive regres-
sion with non-negativity constraints imposed conditioned on parameters and has the
highest predictive likelihood among all 14/15 single predictors in Sample 1/Sample 2.
In Sample 1, it is predictor EP, whereas it is predictor SII in Sample 2. UPR-MC-NLB
represents equal-weighted density combination of all unconstrained univariate predictive
regressions with 14 economic predictors. UPR-PC-NLB is the unconstrained univariate
predictive regression with predictor as the first principal component extracted from all
14 economic predictors. UPR-MC-LB-P and UPR-PC-LB-P are restricted versions of
UPR-MC-NLB and UPR-PC-NLB respectively, with non-negativity constraints imposed
conditioned on parameters.
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Figure 1: Out-of-sample point forecasts of multiple predictive regressions
We compute predictive mean of constrained (solid) and unconstrained (dashed) multiple
predictive regressions for Sample 1 (1927:01-2014:12) on the top and Sample 2 (1973:01-
2014:12) on the bottom. The out-of-sample predictive means are calculated for each
month from 1947:01 to 2014:12 in Sample 1 and from 1990:01 to 2014:12 in Sample 2.
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value greater than 0 indicates that the method performs better than the NoPred in

terms of the predictive likelihood. The second and third columns in Table 2 report log

predictive likelihood ratio results for Sample 1 and Sample 2 respectively.

Next, we compare the predictive performance of the constrained multiple predictive

regression with other alternatives. First, the economically motivated constraints signif-

icantly improve the out-of-sample performance. The unconstrained multiple predictive

regression performs much worse than the no-predictability benchmark in terms of pre-

dictive accuracy. However, after imposing the non-negativity constraints, there is sub-

stantial improvement and the constrained multiple predictive regression outperforms the

no-predictability benchmark by a wide margin. Fig. 2 plots the cumulative log predictive

likelihood ratios of the multiple predictive regressions relative to the no-predictability

benchmark. As we can see from the plot, the constrained multiple predictive regression

(solid line) has a strong upward trend, except a slightly negative slope for the late 1990s,

and is consistently greater than 0. The better performance of the constrained multiple

predictive regression over the no-predictability benchmark is, therefore, quite consistent

over time.

Second, the constrained multiple predictive regression improves on the performance

of the univariate regressions UPR-NLB and UPR-LB-P. Both UPR-NLB and UPR-LB-P

have 14 different specifications in Sample 1 (1927:01-2014:12) because there are 14 dif-

ferent economic predictors. This number increases to 15 in Sample 2 (1973:01-2014:12)

as the newly constructed predictor SII becomes available at the beginning of 1973. We

only report UPR-NLB and UPR-LB-P models with the highest predictive likelihood in

the table. In Sample 1, they are UPR-NLB with predictor RVOL and UPR-LB-P with

predictor EP. In Sample 2, we show that the SII predictor outperforms the other predic-

tors in both UPR-NLB and UPR-LB-P, even after accounting for parameter uncertainty

as we have done here, which lends further support for the findings of Rapach et al.

(2015). Nevertheless there are quite a few univariate predictive regressions, there is few

studies providing guidance on which predictor to use before Rapach et al. (2015). This

makes multiple predictive regression an appealing alternative to univariate predictive

regression as there is no need to select the single predictor that works best. Moreover,

even though Rapach et al. (2015) show that they find the best single predictor SII, it
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is demonstrated in Table 2 that the constrained multiple predictive regression performs

better than the univariate predictive regression with SII in Sample 2. The superior-

ity of the constrained multiple predictive regression over the best univariate predictive

regression holds in Sample 1 as well. The implication of this result is consistent with

Rapach et al. (2010), where they suggest there are more state variables that determine

the equity premium instead of just one or a few.

Third, we look at if our constrained multiple predictive regression is able to improve

over the other two approaches that utilize multiple predictors, the model combination

approach (UPR-MC-NLB) and the predictor combination approach (UPR-PC-NLB). In

Sample 1 (1927:01-2014:12), our result shows that these two approaches are able to gen-

erate more accurate prediction than the no-predictability benchmark, which is consistent

with the previous findings (see, e.g., Rapach et al., 2010, Neely et al., 2014). In Sample 2

(1973:01-2014:12), UPR-MC-NLB beats the no-predictability benchmark whereas UPR-

PC-NLB fails. Despite of the gains from these two approaches, our result shows that

the constrained multiple predictive regression, a more direct way to incorporate multi-

ple predictors, produces much higher predictive likelihood. Imposing the non-negativity

constraints conditioned on parameters (UPR-MC-LB-P and UPR-PC-LB-P) does not

improve these two approaches.

Finally, the constrained multiple predictive regression beats the other alternatives

consistently over time in predictive likelihood. Table 3 reports the log predictive like-

lihood ratios for finer prediction samples. For Sample 1 (1927:01-2014:12), we split

the prediction sample into two subsamples 1947:01-1978:12 and 1979:01-2014:12. For

Sample 2 (1973:01-2014:12), we consider two subsamples 1990:01-2006:12 and 2007:01-

2014:12. The break-up points years 1978 and 2006 are selected by following Pettenuzzo

et al. (2014) and Rapach et al. (2015) respectively. Table 3 shows that the constrained

multiple predictive regression achieve the highest predictive likelihoods in all subsamples.

3.4.2 Economic evaluation

In this section we examine the utility gain from each predictive method, relative to

the no-predictability benchmark, in a portfolio optimization setting. Following previous

studies on portfolio optimization from a Bayesian perspective, for example, Kandel and
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Table 3
Log predictive likelihood ratios for subsamples

Sample 1 (1927:01-2014:12) Sample 2 (1973:01-2014:12)

1947:1-1978:12 1979:1-2014:12 1990:1-2006:12 2007:1-2014:12

MPR-LB 14.89 11.42 2.55 6.52

MPR-NLB −0.20 −9.05 −8.47 −3.30

UPR-NLB 2.26 0.74 −0.10 1.98

UPR-LB-P 0.98 0.71 0.04 0.65

UPR-MC-NLB 1.02 0.23 −0.47 1.57

UPR-MC-LB-P −0.17 0.03 −0.25 0.03

UPR-PC-NLB 1.24 −0.09 −0.64 −0.20

UPR-PC-LB-P 0.44 0.48 −0.49 0.05

The table reports the log predictive likelihood ratio of each method against the no-
predictability benchmark in different subsamples. The second and third columns report
the log predictive likelihood ratio for Sample 1 (1927:01-2014:12) in the prediction sample
1947:01-1978:12 and 1979:01-2014:12 respectively. The fourth and fifth columns report
the log predictive likelihood ratio for Sample 2 (1973:01-2014:12) in the prediction sample
1990:01-2006:12 and 2007:01-2014:12 respectively. See the notes to Table 2 for method
specifications of MPR-LB, MPR-NLB, UPR-MC-NLB, UPR-MC-LB-P, UPR-PC-NLB,
and UPR-PC-LB-P listed in the first column. UPR-NLB is the unconstrained univariate
predictive regression with the highest predictive likelihood among all single predictors
in each prediction sample. In the prediction sample 1947:01-1978:12 of Sample 1, it
is predictor NTIS; in the prediction sample 1979:01-2014 of Sample 1, it is predictor
DFR; and in the prediction samples 1990:01-2006:12 and 2007:01-2014:12 of Sample 2,
it is predictor SII. UPR-LB-P is the univariate predictive regression with non-negativity
constraints imposed conditioned on parameters and has the highest predictive likelihood
among all single predictors in each prediction sample. In the prediction sample 1947:01-
1978:12 of Sample 1, it is predictor BM; in the prediction sample 1979:01-2014:12 of
Sample 1, it is predictor EP; and in the prediction samples 1990:01-2006:12 and 2007:01-
2014:12 of Sample 2, it is SII.
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Stambaugh (1996) and Johannes et al. (2014), we consider the portfolio problem for a

representative investor with a constant relative risk aversion (CRRA) utility function.

For wealth weight ω on risky asset and excess return r on risky asset, the CRRA utility

function is

U(ω, r) =
[(1− ω) exp(rf ) + ω exp(rf + r)]1−γ

1− γ
, (3.6)

where rf is the continuously compounded Treasury bill rate and γ is the investor’s

coefficient of relative risk aversion, which we assume is five.

Suppose that at time t, the investor solves the optimal asset allocation problem using

the Bayesian predictive density (Kandel and Stambaugh, 1996)

ω∗t = arg max
ω

∫
[U(ω, rt+1)]f(rt+1|Dt) drt+1 (3.7)

where f(rt+1|Dt) in the current problem is p(rt+1|Dt) or pc(rt+1|Dt) from Eq. (2.14)

and Eq. (2.23). Approximating the integral by Monte Carlo draws from f(rt+1|Dt), the

above problem can be solved as

ω∗t = arg max
ω

G∑
j=1

{
[(1− ω) exp(rft) + ω exp(rft + r

(j)
t+1)]1−γ

1− γ

}
, (3.8)

where r
(j)
t+1 is simulated from f(rt+1|Dt) and G is a large number, say 20,000. Following

Kandel and Stambaugh (1996), we restrict ω∗t to the interval [0, 0.99].

Given the solution ω∗t and the realized return rt+1 at time t + 1, we compute the

hypothetical realized utility from each predictive model. Denote this realized utility as

Ut+1 where

Ut+1 = U(ω∗t , rt+1) (3.9)

To evaluate the economic value of each model with monthly data, we compute the

annualized certainty equivalent return (CER) in percent for the consecutive sample from

month m to month n,

CER(m,n) = 1200×


[

(1− γ)

∑n−1
t=m−1 Ut+1

n−m + 1

] 1
1−γ

− 1

 (3.10)

As in Section 3.4.1, we compare the performance of each method relative to the
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no-predictability benchmark NoPred. The CER of each method minus the CER of

the NoPred is defined as the CER gain of the method. It measures the willingness

to pay for having access to the predictive method over the no-predictability bench-

mark. In Table 4, these gains are reported for the prediction samples of both Sample 1

(1927:01-2014:12) and Sample 2 (1973:01-2014:12). Similar to the statistical evaluation,

UPR-NLB and UPR-LB-P are reported as the univariate predictive regressions with the

highest certainty equivalent gains. In Sample 1, they are UPR-NLB with predictor DE

and UPR-LB-P with predictor EP. In Sample 2, coinciding with the statistical evalu-

ation, UPR-NLB and UPR-LB-P with predictor SII achieve the largest economic gain

among all the predictive regressions with single predictor. Thus, the relevance of the

short interest index in forming market portfolios, observed by Rapach et al. (2015) from

a non-Bayesian perspective, is still very much valid from the Bayesian perspective.

Table 4 shows that our constrained multiple predictive regression delivers best eco-

nomic performance among all the competing models we consider. Both measures of

method performance, the predictive likelihood and portfolio gains, identify the con-

strained multiple predictive regression as the best performing specification. Therefore,

the two metrics pick up the same method. However, if, for example, we are interested

in using the unconstrained univariate predictive regressions, then in Sample 1 (1927:01-

2014:12), the statistical metric picks up predictor RVOL and the economic metric picks

up a different predictor DE. This creates further difficulties of which single predictor to

use in univariate predictive regressions. It seems that predictor SII can ameliorate the

problem because SII beats the other economic predictors in Sample 2 (1973:01-2014:12)

under both metrics but it falls behind the constrained multiple predictive regression.

Fig. 3 offers a different perspective on the portfolio formed from our constrained

multiple predictive regression model. It shows the log cumulative wealth for three port-

folios, based on forecasts from the constrained multiple predictive regression (solid line),

the unconstrained multiple predictive regression (dashed line), and the no-predictability

model (dotted line), respectively. The constrained multiple predictive regression gen-

erates the highest cumulative wealth for nearly all time periods in both samples. In

addition, for most of the time periods, the log cumulative wealth curve of the con-

strained multiple predictive regression has a steeper upward trend than the other two
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Table 4
Out-of-sample certainty equivalent return gains (%)

Sample 1 (1927:01-2014:12) Sample 2 (1973:01-2014:12)

MPR-LB 0.896 2.912

MPR-NLB −0.192 1.035

UPR-NLB 0.284 1.805

UPR-LB-P 0.440 0.688

UPR-MC-NLB −0.053 −0.640

UPR-MC-LB-P 0.278 −0.040

UPR-PC-NLB −0.285 −0.586

UPR-PC-LB-P 0.304 −0.195

The table reports the annualized certainty equivalent return gains (%) for investors who
select market equity and Treasury bills every month based on forecasts from the predic-
tive method relative to the no-predictability benchmark (NoPred). The second column
reports the annualized certainty equivalent return gains for Sample 1 (1927:01-2014:12)
in the prediction sample 1947:01-2014:12, and the third column reports the annualized
certainty equivalent return gains for Sample 2 (1973:01-2014:12) in the prediction sam-
ple 1990:01-2014:12. The weight on equity is restricted from 0 to 0.99. Investors are
assumed to have constant relative risk aversion utility with relative risk aversion coeffi-
cient of five. See the notes to Table 2 for method specifications of MPR-LB, MPR-NLB,
UPR-MC-NLB, UPR-MC-LB-P, UPR-PC-NLB, and UPR-PC-LB-P listed in the first
column. UPR-NLB is the unconstrained univariate predictive regression with the high-
est certainty equivalent returns among all 14/15 single predictors in Sample 1/Sample
2. In Sample 1, it is predictor DE, whereas it is predictor SII in Sample 2. UPR-LB-P is
the univariate predictive regression with non-negativity constraints imposed conditioned
on parameters and has the highest certainty equivalent returns among all 14/15 single
predictors in Sample 1/Sample 2. In Sample 1, it is predictor EP, whereas it is predictor
SII in Sample 2.
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curves. To get a quantitative description of the economic performances over time, we

report the CER gains over subsamples for both Sample 1 and Sample 2 in Table 5. The

results show that the constrained multiple predictive regression consistently generates

higher returns than the other alternatives over time as it produces the highest CER

gains in all subsamples. In particular, the fifth column reports results for the subsample

2007:01-2014:12, which includes the period of the 2008-2009 Financial Crisis. For this

subsample, the gain from the constrained multiple predictive regression is especially pro-

nounced and amounts to 687 basis points per annum. This is consistent with findings of

Rapach et al. (2010),Henkel, Martin, and Nardari (2011), and Rapach et al. (2015), who

note that the market return predictability and its associated utility gain is particularly

substantial over periods of severe economic downturns.

The above results assume that γ = 5. Table 6 shows that these results are robust to

this choice. The second and fourth columns in Table 6 report CER gains for investors

with γ = 2, while the third and fifth columns contain results for investors with γ = 10.

For both values of γ, the constrained multiple predictive regression delivers highest CER

values among all the methods and in both data samples.

4 Conclusion

In this paper, we provide a new strategy, from the Bayesian perspective, for predicting

excess market returns. We show that the multiple predictive regression model can pro-

duce striking results if the Bayesian predictive mean is constrained to be non-negative.

In our extensive empirical study we show that the Bayesian multiple predictive regres-

sion with our lower bound constraints can produce sizable statistical and economic gains,

relative to various alternative methods and approaches. Importantly for practice, our

new strategy is easy to implement. We believe that on account of these features, and

clear successes in the empirical analysis, that the predictive strategy described in this

paper will open a new fruitful avenue for dealing with the difficult and vital problem of

predicting the excess market returns, one that is likely to attract considerable interest.
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Table 5
Out-of-sample certainty equivalent return gains (%) for subsamples

Sample 1 (1927:01-2014:12) Sample 2 (1973:01-2014:12)

1947:1-1978:12 1979:1-2014:12 1990:1-2006:12 2007:1-2014:12

MPR-LB 0.872 0.917 1.043 6.868

MPR-NLB −0.805 0.358 −0.506 4.289

UPR-NLB 0.234 0.329 0.457 5.399

UPR-LB-P 0.740 0.290 0.226 1.657

UPR-MC-NLB 0.129 −0.216 −0.917 −0.059

UPR-MC-LB-P 0.501 0.078 −0.083 0.049

UPR-PC-NLB 0.050 −0.586 −0.764 −0.214

UPR-PC-LB-P 0.660 −0.015 −0.225 −0.133

The table reports the annualized certainty equivalent return gains (%) in different sub-
samples for investors who select market equity and Treasury bills every month based
on forecasts from the predictive method relative to the no-predictability benchmark
(NoPred). The second and third columns report the annualized certainty equivalent
return gains for Sample 1 (1927:01-2014:12) in the prediction sample 1947:01-1978:12
and 1979:01-2014:12 respectively. The fourth and fifth columns report the annualized
certainty equivalent return gains for Sample 2 (1973:01-2014:12) in the prediction sam-
ple 1990:01-2006:12 and 2007:01-2014:12 respectively. The weight on equity is restricted
from 0 to 0.99. Investors are assumed to have constant relative risk aversion utility with
relative risk aversion coefficient of five. See the notes to Table 2 for method specifications
of MPR-LB, MPR-NLB, UPR-MC-NLB, UPR-MC-LB-P, UPR-PC-NLB, and UPR-PC-
LB-P listed in the first column. UPR-NLB is the unconstrained univariate predictive
regression with the highest certainty equivalent returns among all single predictors in
each prediction sample. In the prediction samples 1947:01-1978:12 and 1979:01-2014:12
of Sample 1, it is predictor DE; in the prediction sample 1990:01-2006:12 of Sample 2,
it is DFR; and in the prediction sample 2007:01-2014:12 of Sample 2, it is predictor SII.
UPR-LB-P is the univariate predictive regression with non-negativity constraints im-
posed conditioned on parameters and has the highest certainty equivalent returns among
all single predictors in each prediction sample. In the prediction sample 1947:01-1978:12
of Sample 1, it is predictor DY; in the prediction sample 1979:01-2014:12 of Sample 1,
it is predictor EP; and in the prediction samples 1990:01-2006:12 and 2007:01-2014:12
of Sample 2, it is SII.
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Table 6
Risk aversion effects on certainty equivalent return gains

Sample 1 (1927:01-2014:12) Sample 2 (1973:01-2014:12)

γ = 2 γ = 10 γ = 2 γ = 10

MPR-LB 1.024 0.389 1.255 2.161

MPR-NLB −1.533 −0.269 −0.734 0.652

UPR-NLB 0.663 0.150 0.912 1.225

UPR-LB-P 0.834 0.226 0.006 0.347

UPR-MC-NLB −0.125 −0.028 −0.598 −0.318

UPR-MC-LB-P 0.682 0.142 0.006 −0.019

UPR-PC-NLB −0.723 −0.150 −0.681 −0.382

UPR-PC-LB-P 0.639 0.151 −0.052 −0.098

The table reports the annualized certainty equivalent return gains for investors who
select market equity and Treasury bills every month based on forecasts from the predic-
tive method relative to the no-predictability benchmark (NoPred). The second and third
columns report the annualized certainty equivalent return gains for Sample 1 (1927:01-
2014:12) in the prediction sample 1947:01-2014:12. The fourth and fifth columns re-
port the annualized certainty equivalent return gains for Sample 2 (1973:01-2014:12) in
the prediction sample 1990:01-2014:12. The weight on equity is restricted from 0 to
0.99. Investors are assumed to have constant relative risk aversion utility with relative
risk aversion coefficient γ of two (second and fourth columns) or ten (third and fifth
columns). See the notes to Table 2 for method specifications of MPR-LB, MPR-NLB,
UPR-NLB- MC, CUPR-MC-PC, UPR-PC-NLB, and UPR-PC-LB-P listed in the first
column. UPR-NLB is the unconstrained univariate predictive regression with the highest
certainty equivalent returns among all 14/15 single predictors in the Sample 1/Sample
2. In Sample 1, it is predictor DE, whereas it is predictor SII in Sample 2. UPR-LB-P is
the univariate predictive regression with non-negativity constraints imposed conditioned
on parameters and has the highest certainty equivalent returns among all 14/15 single
predictors in Sample 1/Sample 2. In Sample 1, it is predictor EP, whereas it is predictor
SII in Sample 2.
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Appendix A

We first provide the prior-posterior updates with the normal-inverse-gamma type II dis-

tribution. Let π(β, σ|Dt−1) be the NIGk,2(β, σ|β0,t−1,B0,t−1, ν0,t−1, δ0,t−1) distribution

with density

π(β, σ|Dt−1) ∝ σ−ν0,t−1−k−1 exp

{
− 1

2σ2
[(β − β0,t−1)′B−10,t−1(β − β0,t−1) + δ0,t−1]

}
(4.1)

By Bayes’ theorem,

π(β, σ|Dt) ∝ N (rt|z′t−1β, σ2)π(β, σ|Dt−1) (4.2)

∝ σ−ν0,t−1−k−2 exp

{
− 1

2σ2
[(β − β0,t−1)′B−10,t−1(β − β0,t−1) + (rt − z′t−1β)2 + δ0,t−1]

}
(4.3)

∝ σ−ν0,t−1−k−2× (4.4)

exp

{
−
β′(B−10,t−1 + zt−1z

′
t−1)β − 2(β′0,t−1B

−1
0,t−1 + rtz

′
t−1)β + r2t + β′0,t−1B

−1
0,t−1β0,t−1 + δ0,t−1

2σ2

}
,

(4.5)

which can be rewritten as

π(β, σ|Dt) ∝ σ−ν0,t−k−1 exp

{
− 1

2σ2
[(β − β0,t)

′B−10,t (β − β0,t) + δ0,t]

}
, (4.6)

where the updated parameters are given by

ν0,t = ν0,t−1 + 1, (4.7)

B0,t = (B−10,t−1 + zt−1z
′
t−1)−1, (4.8)

β0,t = B0,t(B
−1
0,t−1β0,t + zt−1rt), (4.9)

δ0,t = δ0,t−1 + r2t + β′0,t−1B
−1
0,t−1β0,t−1 − β′0,tB−10,tβ0,t (4.10)

This is a normal-inverse-gamma type II distribution, with parameters (β0,t,B0,t, ν0,t, δ0,t).
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Next, the predictive distribution of rt+1 is

p(rt+1|Dt) =

∫
θ

N (rt+1|z′tβ, σ2)π(β, σ|Dt)dβdσ (4.11)

=

∫
θ

N (rt+1|z′tβ, σ2)Nk(β|β0,t, σ
2B0,t)IG2

(
σ

∣∣∣∣ν0,t2
,
δ0,t
2

)
dβdσ (4.12)

=

∫
θ

IG2
(
σ

∣∣∣∣ν0,t2
,
δ0,t
2

)∫
N (rt+1|z′tβ, σ2)Nk(β|β0,t, σ

2B0,t)dβdσ (4.13)

=

∫
θ

IG2
(
σ

∣∣∣∣ν0,t2
,
δ0,t
2

)
N
(
rt+1|z′tβ0,t, σ

2(1 + z′tB0,tzt)
)
dσ (4.14)

∝ Γ

(
ν0,t + 1

2

)(
1 +

1

ν0,t

(rt+1 − z′tβ0,t)
2

δ0,t
ν0,t

(1 + z′tB0,tzt)

)− ν0,t+1

2

(4.15)

a student-t distribution with location parameter z′tβ0,t, dispersion parameter
δ0,t
ν0,t

(1 +

z′tB0,tzt) and ν0,t degrees of freedom.

Third, the Kullback-Leibler divergence between two normal-inverse-gamma type II

distributions with parameters (β0c,t,B0,t, ν0,t, δ0,t) and (β0u,t,B0,t, ν0,t, δ0,t) is

Ec,t

[
log
Nk(β|β0c,t, σ

2B0,t)

Nk(β|β0u,t, σ
2B0,t)

]
, (4.16)

where Ec,t is the expectation under NIGk,2(β, σ|β0c,t,B0,t, ν0,t, δ0,t) and

log
Nk(β|β0c,t, σ

2B0,t)

Nk(β|β0u,t, σ
2B0,t)

=− 1

2σ2
[(β − β0c,t)

′B−10,t (β − β0c,t)− (β − β0u,t)
′B−10,t (β − β0u,t)]

(4.17)

=(β0c,t − β0u,t)
′B−10,tβσ

−2 − 1

2
(β′0c,tB

−1
0,tβ0c,t − β′0u,tB−10,tβ0u,t)σ

−2

(4.18)

Therefore, to compute the right hand side quantity in Eq. (4.16), we just need to get

Ec,t[βσ
−2] and Ec,t[σ

−2]. By definition,∫
σ>0

σ−2IG2(σ|ν, δ)dσ =

∫ ∞
0

2δν

Γ(ν)
σ−2ν−3 exp(−δσ−2)dσ (4.19)
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If we replace η = δσ−2 and substitute it back to the above equation, then∫ ∞
0

2δν

Γ(ν)
σ−2ν−3 exp(−δσ−2)dσ =

∫ ∞
0

ην

δΓ(ν)
exp(−η)dη (4.20)

=
Γ(ν + 1)

δΓ(ν)
=
ν

δ
(4.21)

from properties of the gamma function. Therefore,

Ec,t[βσ
−2] =

∫
σ>0

σ−2IG2
(
σ

∣∣∣∣ν0,t2
,
δ0,t
2

)∫
βNk(β|β0c,t, σ

2B0,t)dβdσ (4.22)

=

∫
σ>0

σ−2IG2
(
σ

∣∣∣∣ν0,t2
,
δ0,t
2

)
β0c,tdσ (4.23)

= β0c,t

∫
σ>0

σ−2IG2
(
σ

∣∣∣∣ν0,t2
,
δ0,t
2

)
dσ (4.24)

=
ν0,t
δ0,t
β0c,t (4.25)

and

Ec,t[σ
−2] =

ν0,t
δ0,t

(4.26)

Hence, the K-L divergence is

ν0,t
2δ0,t

(β0c,t − β0u,t)
′B−10,t (β0c,t − β0u,t), (4.27)

as stated in the text.

Appendix B

This appendix proves the result in Proposition 1.

Proof. For the optimization problem,

min
β0c,t

ν0,t
2δ0,t

(β0c,t − β0u,t)
′B−10,t (β0c,t − β0u,t)

s.t. z′tβ0c,t ≥ 0

the objective function is quadratic and convex and the constraint is affine and satisfies

Slater’s condition. This implies that the Karush-Kuhn-Tucker (KKT) conditions are the
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sufficient and necessary condition for optimality (Boyd and Vandenberghe, 2004).

Denote the solution to the problem as β0c,t. Then the KKT conditions are

2(β0c,t − β0u,t)
′B−10,t − λz′t = 0 (4.28)

z′tβ0c,t ≥ 0 (4.29)

λz′tβ0c,t = 0 (4.30)

λ ≥ 0 (4.31)

First, it’s easy to show that when z′tβ0u,t ≥ 0, β0c,t = β0u,t and the objective function

value is 0. When z′tβ0u,t < 0, consider the following two cases,

1. z′tβ0c,t > 0. The KKT conditions then imply λ = 0. Hence 2(β0c,t−β0u,t)
′B−10,t = 0.

Matrix B0,t is a covariance matrix and is always positive definite. Hence β0c,t =

β0u,t. Therefore z′tβ0u,t > 0 and it is a contradiction with the assumption that

z′tβ0u,t < 0.

2. z′tβ0c,t = 0. Multiply B0,t from the right on both sides of Eq. (4.28) and we have

2(β0c,t − β0u,t)
′ = λz′tB0,t (4.32)

Solve β0c,t from this equation and we have

β0c,t = β0u,t +
λ

2
B0,tzt (4.33)

Substitute it into z′tβ0c,t = 0 and we have

λ = −
2z′tβ0u,t

z′tB0,tzt
(4.34)

Note z′tB0,tzt is strictly positive. As B0,t is positive definite, z′tB0,tzt can only be

zero when zt = 0 and that will be a contradiction with z′tβ0u,t < 0. Therefore λ is

positive. Substitute the λ solution in Eq. (4.34) back to Eq. (4.33) and we have

β0c,t = β0u,t −
z′tβ0u,t

z′tB0,tzt
B0,tzt (4.35)
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Constrained Unconstrained

Figure 2: Cumulative log predictive likelihood difference of multiple predictive
regressions
Cumulative log (base e) predictive likelihood difference of the constrained (solid) and the
unconstrained (dashed) multiple predictive regression, relative to the no-predictability
model. The cumulation is over 1947:01 to each month in 1947:01 to 2014:12 in Sample 1
(1927:01-2014:12) on the top. The cumulation is over 1990:01 to each month in 1990:01
to 2014:12 in Sample 2 (1973:01-2014:12) on the bottom.
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Figure 3: Cumulative wealth of investors forming portfolios by multiple pre-
dictive regressions
Investors form portfolios based on prediction from the constrained (solid) and the uncon-
strained (dashed) multiple predictive regression and the no-predictability model (dot-
ted). They start with $1 at the beginning of 1947:01 and reinvest all proceeds every
month in the longer data sample (top), whereas start with $1 at the beginning of 1990:01
in the shorter sample (bottom). Investors have relative risk aversion coefficient of five.
The weight on the equity is restricted from 0 to 0.99.
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