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Abstract

This paper addresses the non-standard problem of detecting multiple structural breaks when
the data-generating model in each regime is uncertain, with an application to factor selec-
tion in empirical asset pricing. Detection is based on the marginal likelihood of break points,
obtained by a novel integration over all possible pairings of models across regimes, from all
possible models within regimes. The optimal break points maximize this marginal likelihood.
Applying this method to the six Fama-French factors on monthly data from 1963–2023, the
analysis identifies three breaks—1982, 1998, and 2009—and a shift toward more parsimo-
nious models after 1998. Before 1998, five or six factors are selected, but two afterward.
Thus, with breaks, there is a move to parsimony, which has implications for the factor zoo
literature. Moreover, within each regime, all omitted factors are spanned by the ones se-
lected. Incorporating breaks also leads to substantially different weight allocations in the
maximum Sharpe ratio risk factor portfolio.
Keywords: Model comparison, Factor models, Structural breaks, Bayesian analysis.
JEL classifications: G12, C11, C12, C52, C58

1. Introduction

‘US small-cap stocks are suffering their worst run of performance relative to large com-

panies in more than 20 years [...] The Russell 2000 index has risen 24% since the beginning

of 2020, lagging the S&P 500’s more than 60% gain over the same period. The gap in per-

formance upends a long-term historical norm in which fast-growing small-caps have tended

to deliver punchier returns for investors who can stomach the higher volatility.”1 (Financial

Times, 2024)

The empirical literature on asset pricing has proposed a large number of factors that claim

to explain the cross-section of expected stock returns (Cochrane, 2011). More recently, the

field has been dealing with how to handle this proliferation of factors. Various potential

solutions have been offered (Feng et al., 2020).

⋆January 2025
∗Corresponding author
Email addresses: chib@wustl.edu (Siddhartha Chib), simon.c.smith@frb.gov (Simon C. Smith)

1This quote is from a March 27, 2024 Financial Times article entitled US small-caps suffer worst run
against larger stocks in more than 20 years.’



This paper presents an intuitively simple point of view that has somehow been overlooked

in the literature. If the set of factors that explain the cross section of expected returns is

varying over time, it is critical to account for this feature when evaluating which factors are

relevant at any given time. There is little doubt that the set of risk factors change. This

can be seen with the Fama-French set of risk factors, which have changed twice over time.

Different economic explanations can support such changes, for example, the publication effect

of Schwert (2003), and/or the adaptive efficient market hypothesis of Lo (2004). The set of

risk factors may also change due to, for example, new technologies, shifts in monetary policy

regimes, or regulations. Using all available historical data will tend to pick up factors that

were important at some point in the past, but are not risk factors at present. As a simple

example, imagine that only two factors are relevant for the first half of the sample and that

two different factors are relevant in the second half. The common approach in the literature

of using all the historical data will tend to suggest that all four factors are relevant for the

entire sample, when in fact no more than two are relevant at any given time. This may

partly explain the problem of the “factor zoo” (Harvey et al., 2016; Hou et al., 2020), as well

as the declining performance of risk factors in a comprehensive set of anomalies (McLean

and Pontiff, 2016). Therefore, it is important to consider the possibility of time variation

when selecting factors.

If one knew the time at which the set of factors changes, one could discard the old irrel-

evant data with a subsample split. In reality, however, this date is not known and therefore

must be estimated. Green et al. (2017), for example, impose a predetermined subsample

split in the early 2000s and find that the number of relevant characteristics has declined over

time. Furthermore, the longer the sample period under consideration, the more likely it is

that there may be multiple times at which the set changes, which further complicates the

problem. This setting is technically challenging because one needs to estimate both the times

at which the set of relevant factors changes and the set of relevant factors within each subpe-

riod. In other words, both the asset pricing model and the parameters of that model change.

This setting is more complex than standard breakpoint problems in which the model param-

eters shift after a break but the model itself (i.e. the selected factors) remains unchanged.

A widely applied approach for this setting was developed in Chib (1998), first applied in

the finance setting by Pástor and Stambaugh (2001) and subsequently in many other pa-

pers. Standard breakpoint problems have been applied to a range of issues in empirical asset

pricing, such as return predictability (Viceira, 1997; Lettau and Van Nieuwerburgh, 2008;

Rapach et al., 2010; Smith and Timmermann, 2021), estimating time-varying risk premia

(Pástor and Stambaugh, 2001; Smith and Timmermann, 2022), and dating the integration

of world equity markets (Bekaert et al., 2002). In this paper, we propose a solution to this
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challenging problem by devising the first method (Bayesian or frequentist) that can simul-

taneously estimate both the times at which the model changes and how the parameters of

the model change, taking the guesswork out of how to determine the subsample splits (or

regimes).

In our methodology, change point detection recognizes model uncertainty. Following

Chib and Zeng (2020), the uncertainty about risk factors is dealt with by considering every

possible split of the given set of factors into risk factors x and non-risk factors y. For a given

set of K factors, there are J = 2K − 1 such splits. Each such split defines a particular asset

pricing model with its own set of parameters. Now in the context of change points, this model

uncertainty is multiplied. We do not know the risk factors in any of the segments induced

by the change points. Consider the case of one break. To address this uncertainty about the

risk factors, we consider the joint distribution of the data given a particular change point

t1, models Mj1,1 on the left with parameters θj1,1, and Mj2,2 on the right with parameters

θj2,2 for (j1, j2) = 1, ..., J = 2K − 1. Then, using the priors on the parameters from Chib

and Zeng (2020), which have been extensively vetted, we find the marginal likelihood of the

entire data given (t1,Mj1,1,Mj2,2). We then marginalize out the models by considering all

possible pairings of models (j1, j2). This gives the marginal likelihood of the entire data

given just that change-point, an idea introduced in the regression context in Chib (2024).

We then repeat this calculation for a grid for possible change points and multiply by the

prior on those change points (taken to be discrete uniform) to get the posterior distribution

of change points up to a normalizing constant. From this posterior distribution, we take the

optimal change point to be the one with the modal posterior probability. Given the optimal

change points we get the risk factors in each of the segments by the model scanning approach

of Chib and Zeng (2020) applied to the data in each segment. The same approach extends in

a straightforward way to two or more change points. Later in the paper, we discuss details

about this approach including the computational intensity and possibilities for dealing with

the large K case.

In our empirical analysis, we focus on the six-factor model of Fama and French (2018).

The model scan is therefore over 63 models, including the popular risk-factor collections

such as the 3- and 5-factor Fama-French models, but it also includes all other combinations

of risk-factors that have not previously been considered. Using monthly data from July

1963 through December 2023, our method identifies three breaks corresponding to a regime

lasting 15 years on average. The breaks occur in 1982, 1998, and 2009. These break dates

correspond to the end of the “monetarist policy experiment” implemented by Paul Volcker

between 1979 and 1982, the Internet revolution and the tech boom on the NASDAQ (Griffin
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et al., 2011),2, and the Global Financial Crisis (GFC).

The set of risk factors changes after each of these breaks. At least five factors are selected

in the first two regimes (up to 1998), while only two factors are selected since. In the current

(post-2009) regime, only the market and profitability factors are selected. In contrast, the

preferred model when using all historical data is a four-factor model that excludes size and

value, which shows that failing to discard pre-break data can lead to a risk factor set being

selected that is not the relevant one for pricing in the current regime. This selected model is

unable to price one of the omitted factors – size – using the whole sample of available data,

highlighting its shortcomings. Furthermore, using the entire data sample, our approach

reveals that the momentum factor is not priced by the Fama-French 5-factor model; and the

momentum, investment, and profitability factors are not priced by the Fama-French 3-factor

model.

While dense factor models are most informative until 1998, we find evidence of a clear

shift toward more parsimonious models since 1998. This parallels the finding of Kelly et al.

(2019) who use Instrumented Principal Components Analysis to document that just five

latent factors can outperform existing factor models.

In every regime, each of the omitted factors is priced by the selected factors, suggesting

that they are spanned by the smaller subset of selected factors and can therefore be confi-

dently excluded. The maximum Sharpe ratio portfolio shows clear evidence of time-varying

weight allocations across the different factors, a feature that is concealed when precluding

breaks. In addition, our methodology would be useful for detecting any change in the current

set of risk factors in the future.

Finally, our methodology provides regime-specific estimates of factor risk premia and their

price of risk. A small subset of studies that estimate time-varying risk premia include Ferson

and Harvey (1991); Freyberger et al. (2020), Gu et al. (2020), Gagliardini et al. (2016), Ang

and Kristensen (2012), and Adrian et al. (2015). Mounting empirical evidence of sizeable

risk premia associated with these factors has important implications for investment strategies

and has markedly changed the investment landscape, leading to the proliferation of mutual

funds specializing in certain investment styles such as small caps or value stocks. The appeal

of such strategies depends not only on the magnitude of the associated risk premia, but also

on the stability of their risk premia over time. Factor premia may time-vary due to investors

differing in sophistication or investment objectives, enabling the marginal investor to differ

across stocks and over time for a given stock. Individual investors can form mean-variance

2This break also coincides with a period of dramatic changes in market efficiency that has been docu-
mented by Chordia et al. (2011).
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portfolios, while others may pursue very large payoffs. Some investors may follow “buy-

and-hold” strategies, and others may periodically rebalance to target certain weights. We

find clear time-variation in the risk premia for all six factors since 1963. For example, the

value premium and size premium have declined over time and neither factor is selected in

the current regime (Fama and French, 2021). The implied weights on the value factor in the

maximum Sharpe ratio portfolio therefore declined over time, indicating that high allocations

to value stocks have become notably less attractive over time.

Bessembinder et al. (2021) estimate factor risk premia using a fixed 60-month rolling

window and document clear time-variation in the number of factors selected over time.

However, as we show in our empirical analysis, a rolling window leads to factors entering and

exiting the SDF very frequently, sometimes on a monthly basis. The economic motivation for

this behavior, however, is difficult to justify. This is why a formal method is needed to identify

the set of risk factors that is stable within a regime, but is allowed to shift occasionally over

time. Bianchi et al. (2019) also document evidence of time-varying sparsity in factor models.

We present the first approach (either Bayesian or frequentist) to do so.

The remainder of the paper is organized as follows. In Section 2 we detail our method-

ology. In Section 3 we present evidence of a simulation study. Section 4 introduces our

empirical application, discussing evidence of breaks, the regime-specific selected factors, and

their corresponding risk premia estimates. Section 5 discusses the pricing performance and

investment implications of our selected factor collection and Section 6 concludes.

2. Methodology

We now outline the economic motivation for breaks in the risk factor model. Then, to

build intuition, we explain how the methodology works for the no-break and single-break

cases, before explaining our methodology for the most general case in which the subset of

risk factors can shift across an unknown number of breaks that occur at unknown times.

Finally, we detail the prior specification.

2.1. Economic Sources of Breaks in the Factor Model

Formally, suppose that for a time series sample from t = 1, . . . , T , we have data f = {f t},
t ≤ T on a set of K (potential) risk factors. Suppose that the stochastic discount factor

(SDF) at time t is given by

Mt = 1− b′(f t − λ)

where b is the vector of market prices of factor risks and λ is the vector of factor risk-premia.

In an environment where the underlying firm-level production function is subject to breaks,
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due to technological innovations, it is more appropriate to assume that firm-level profitability

would depend on a time-varying set of firm-level lagged characteristics. In this situation, the

SDF would be more appropriately characterized by a time-varying SDF

Mt = 1− b′t(f t − λt)

where the market prices and factor risk-premia are time-varying. If we imagine that some

of the lagged characteristics that determine firm-level profitability cease to be significant

for periods of time due to changes in persistent shocks (innovations) to production, this

would imply that some of the elements in the market price vector bt would be zero and the

corresponding elements of f t would drop out of the SDF, that is, cease to be risk factors.

To describe this situation, let xt ⊆ f t denote a subset of f t with non-zero market prices

of factor risks. Suppose that the market prices bt change at unknown break dates

1 < t∗1 < t∗2 < · · · < t∗m < T (1)

where m (the number of breaks) is also an unknown parameter. In particular, a different set

of risk factors enters the SDF in each regime and thus there are (m+ 1) risk factor sets

x∗
t =



x1
t t ≤ t∗1

x2
t t∗1 < t ≤ t∗2
...

...

xm
t t∗m−1 < t ≤ t∗m

xm+1
t t∗m < t ≤ T.

(2)

The objectives of the analysis are to find

• the number of breaks m ∈ {0, 1, 2, . . . ,M}

• the timing of the breaks, t∗1, . . . , t
∗
m

• the risk factors in each regime x1
t , . . . ,x

m+1
t .

We now outline the framework developed by Chib and Zeng (2020) to find risk factors in

the absence of breaks. We then generalize their framework to find risk factors with a single

break in the market price vector (to help build intuition) and then consider the extension to

multiple breaks (which we subsequently take to the data).
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2.2. No breaks

Chib and Zeng (2020) develop a Bayesian model scanning approach to determine which

subset of potential risk factors enters the SDF. To do this, they exploit the fact that asset

pricing theory places restrictions on the joint distribution of factors that enter the SDF and

those that do not. One key restriction is that the non-risk factors should be priced by the risk

factors. One can therefore construct all possible decompositions of the joint distribution of

factors in terms of a marginal distribution of the risk factors and a conditional distribution of

the non-risk factors (imposing the pricing restriction on the latter) and determine by Bayesian

marginal likelihoods, calculated by integrating out the parameters from the sampling density

with respect to the prior of the parameters, which such decomposition is the best. The risk

factors in that best decomposition are then taken to be the risk factors best supported by

the data.

Therefore, to isolate the best set of risk factors, consider all possible splits of f t into xt,

the risk factors, and yt, the non-risk factors. These splits produce models that we indicate

by Mj, for j = 1, . . . , J = 2K − 1. At time t, the data-generating process under Mj is given

by

xj,t = λj + uj,t, (3)

yj,t = Γjxj,t + εj,t , t = 1, . . . , T , (4)

where the errors are distributed as multivariate Gaussian:

uj,t ∼ N (0,Ωj) , εj,t ∼ N (0,Σj) . (5)

Let the unknown parameters in this model be denoted by

θj = (λj,Ωj,Γj,Σj) , j ≤ J . (6)

Note that each of these models has a distinct set of risk factors and a distinct set of param-

eters.

Apart from λj, the prior of the parameters Ωj,Γj,Σj are derived by change-of-variable

from a single inverse Wishart prior placed on the matrix Ωj in the model where all factors

are risk-factors. The hyperparameters of this single inverse Wishart distribution, and those

of the model-specific λj, are calculated from a training sample (which we take to be the first

15% of the sample data). The training sample data are subsequently discarded, and not

used for estimation or model comparison purposes.
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Let π (θj) denote the prior on θj. Then, the marginal likelihood of f given Mj is

marglik(f |Mj) =

∫ T∏
t=1

N (xj,t|λj,Ωj)N (yj,t|Γjxj,t,Σj) dπ (θj) , j ≤ J, (7)

whereN (z|m,V ) is the multivariate normal density with meanm and covariance matrix V ,

evaluated at z. These integrals are in closed form as shown in Chib et al. (2020). However,

their approach assumes that the set of risk factors is time-invariant.

2.3. Single break

Assume for now the case of a single break. To find the unknown break date t∗1, consider

a break point t1. For this break point, let the sample data on each side of the break be

denoted by

f s,1 = {f t : ts−1 < t ≤ ts} , s = 1, 2

where the second subscript in f indicates that this is the split in a setting with one break,

and s ∈ {1, 2} indicates the regime or segment s. A set of risk factors x1
t enters the SDF

in the first regime (from time periods t = 1, . . . , t1) and another set x2
t enters in the second

regime (from time periods t = t1 + 1, . . . , T ). We assume that the risk factor set is stable

within each regime.

To infer the optimal break date, and the identities of the risk factors x1
t and x

2
t , we focus

on the quantity

marglik(f 1,1,f 2,1|t1) (8)

which is the marginal likelihood of the data segmented by the break date. We calculate this

quantity on a large grid of possible break dates and let t∗1 be the date with the largest value

of this marginal likelihood.

The problem in calculating the preceding quantity is that we do not know the identity

of risk factors before and after the split. To deal with this two-way model uncertainty, we

consider all possible divisions of f t into xt and yt, on either side of t1. Denote the models on

the left of the split by Mj1,1 and on the right by Mj2,2, for (j1, j2) = 1, ..., J = 2K − 1. When

j1 = j2 the splits are identical but the parameters of the model are different. Just as we did

in Equation (4), the jth model in regime s, s = 1, 2, for t ∈ Ts,1, where T1,1 = {t : t ≤ t1}
and T2,1 = {t : t > t1}, takes the form

xj,s,t = λj,s + uj,s,t

yj,s,t = Γj,sxj,s,t + εj,s,t

uj,s,t ∼ N (0,Ωj,s) , εj,s,t ∼ N (0,Σj,s) .
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We denote the unknown parameters in these models by θj,s = (λj,s,Ωj,s,Γj,s,Σj,s). Note

that each of these models has a different set of risk factors and a different set of parameters,

and because we have a break, these parameters differ between regimes.

Letting π (θj,s) denote the prior on θj,s, the marginal likelihood of f s,1 given Mj,s and t1,

for j ≤ J and s = 1, 2, is

marglik(f s,1|Mj,s, t1) =

∫ ∏
t∈Ts,1

N (xj,s,t|λj,s,Ωj,s)N (yj,s,t|Γj,sxj,s,t,Σj,s) dπ (θj,s)

We can calculate these segment-wise marginal likelihoods by the method of Chib (1995).

Now by extending the argument and marginalization the marginal likelihood of the entire

data given t1 can be written as

marglik(f 1,1,f 2,1|t1) =
J∑

j1=1

J∑
j2=1

marglik(f 1,1,f 2,1|Mj1,1,Mj2,2, t1) Pr(Mj1,1) Pr(Mj2,2) (10)

=
1

J2

J∑
j1=1

J∑
j2=1

marglik(f 1,1|Mj1,1, t1)marglik(f 2,1|Mj2,2, t1) (11)

where in the second line we have assumed equal prior probabilities of models and the fact

that the joint distribution factors into independent components given the models. In effect,

what we do is pair each of the J possible models in the first regime with each possible model

in the second and then marginalize over all possible such pairings.

We repeat the above calculation for every possible break date. The break date and

two collections of regime-specific risk factors best supported by the data are those with the

highest marginal likelihood.

2.4. Multiple breaks

With multiple breaks, we perform the same marginal likelihood calculation as in the

single break approach, but this time, given m breaks, we calculate the marginal likelihood

of the data segmented by the m breaks:

marglik(f 1,m, ...,fm+1,m|t1, . . . , tm). (12)

We calculate this quantity for every possible combination of the m breaks and hence every

possible combination of the J models in each of the m+ 1 regimes.

Let the time points in the (m + 1) regimes of [1, T ] induced by these m break dates be
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denoted by the sets

Ts,m = {t : ts−1 < t ≤ ts} , s = 1, ...,m+ 1. (13)

Let the data on the factors in Ts,m be given by

f s,m = {f t : ts−1 < t ≤ ts} , s = 1, ...,m+ 1. (14)

Once again, we consider all possible splits of f t into xt and yt, in each of the m + 1

regimes. For regimes s = 1, . . . ,m+ 1, these splits produce models that we indicate by Mj,s

for j = 1, ..., J = 2K − 1. At time t, in regime s, the data generating process under Mj,s is

given by

xj,s,t = λj,s + uj,s,t

yj,s,t = Γj,sxj,s,t + εj,s,t

uj,s,t ∼ N (0,Ωj,s)

εj,s,t ∼ N (0,Σj,s), t ∈ Ts,m.

Denoting the unknown parameters in these models by θj,s = (λj,s,Ωj,s,Γj,s,Σj,s), the

marginal likelihood of f s,m given Mj,s and the breaks (t1, . . . , tm) is given by

marglik(f s,m|Mj,s, t1, . . . , tm) =

∫ ∏
t∈Ts,m

N (xj,s,t|λj,s,Ωj,s)N (yj,s,t|Γj,sxj,s,t,Σj,s)dπ(θj,s)

(16)

The next step is to calculate the marginal likelihood of a given vector of change points

given pairings of models from each of the m+ 1 regimes. There are J (m+1) such pairings in

all regimes. For any one of these pairings, the marginal likelihood given the models in the

pairings can be written as

marglik(f 1,m, ...,fm+1,m|Mj1,1,Mj2,2, ...,Mjm+1,m+1, t1, . . . , tm)

=
m+1∏
s=1

marglik(f s,m|Mjs,s, t1, . . . , tm),

where we have used the fact that the joint factors into independent components given the

models. We can get the desired marginal likelihood by summing the right hand side over

all possible pairings of models. Specifically, we pair each of the J possible models in the

first regime with each of the J possible models in each of the remaining m regimes and then
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marginalize over all possible such pairings. Thus,

marglik(f 1,m, ...,fm+1,m|t1, . . . , tm) =
1

Jm+1

J∑
j1=1

· · ·
J∑

jm+1=1

m+1∏
s=1

marglik(f s,m|Mjs,s, t1, . . . , tm).

(18)

This is the marginal likelihood for the break dates t1, . . . , tm. The calculation is repeated

for all possible locations of the m breaks. For this assumed number of m breaks, the optimal

break dates t∗1, ..., t
∗
m and the m + 1 collection of regime-specific risk factors are those that

have the highest marginal likelihood.

Finally, we repeat this calculation for different numbers of breaks m ∈ {0, 1, 2, ...,M}.
The optimal number of breaks m, their corresponding break dates (t∗1, . . . , t

∗
m), and the set of

risk factors selected in each of the m+ 1 regimes are those which have the highest marginal

likelihood across all the number of breaks up to the maximum number considered. In the

analysis we fix the maximum number of possible breaks, M , to be equal to three at the

outset. This number depends on the sample size T . Due to the likely paucity of data within

regimes, if M is too large relative to T , it is not realistic (or necessary) to have too many

breaks. Moreover, since our Bayesian approach is based on the marginal likelihood which

penalizes overparameterization, it will inherently guard against overfitting the number of

breaks.3

2.5. Prior distributions

Our prior construction follows Chib and Zeng (2020). For completeness, we provide an

abbreviated version here, but we refer the reader to their paper for full details. Formally,

models in segment s are defined by the parameters

θj,s = (λj,s,ψj,s)

where

ψj,s =

Ω1,s j = 1

(Ωj.s,Γj,s,Σj,s) j ≥ 2.

The prior construction relies on the facts that the number of free parameters in

ψ1,s = Ω1,s,

3The identity in Chib (1995) notes that the log of the posterior ordinate is the penalty. Up to terms
bounded in probability, this ordinate in large samples will equal log(T) multiplied by the number of param-
eters (Chib et al., 2018). Thus, more complex models will have a bigger penalty.
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is exactly equal to the number of free parameters in

ψj,s j ≥ 2

and that there is a one-to-one mapping between them. Then, based on a training sample,

which is common to all segments, a prior distribution is formulated for Ω1,s. From this

single distribution, by the change of variable, the distributions of ψj,s, j ≥ 2 are derived. In

this way, the priors across models are equalized. This approach ensures consistency across

model-specific priors, thereby enabling reliable model comparisons.

Finally, the prior of λj,s is also found from the same training sample common to all

segments. This prior is conditioned on the error covariance matrix and is specified in such a

way that it places little weight on implausibly large Sharpe ratios, thus avoiding approximate

arbitrage opportunities (Pástor and Stambaugh, 1999).

2.6. Computational considerations

It is clear that the approach we have developed can be computationally intensive. With

K = 6, there are J = 63 such splits, and with m = 3 change points, there are over 15 million

model pairings that must be averaged for a single configuration of change points. This

process must then be repeated for every possible configuration of change points. Though

this burden is manageable for small to medium values ofK, the burden increases rapidly with

K. Then, practical trade-offs are required, such as limiting the analysis to one change point.

Alternatively, one can adopt the framework of Chib et al. (2024) and work with the FF6

factors plus, say, the top five or seven principal components (PCs) of factors unexplained by

the FF6 factors. In this way, one limits the initial pool of factors to a manageable number

while accessing a wider set of factors through the PCs.

We now present the R function that performs the averaging over the different pairings of

models. This function has been optimized for speed and is capable of handling billions of

pairings efficiently. The input to the function is a list object of length m + 1, where each

element in this list contains the marginal likelihoods for the J models in segment s.

meanprodlogm = function(logmargls = logmargls) {

sumprod12 = function(x1,x2) {

sapply(x1,FUN = function(x){return(sum(x*x2))})

M1 = length(logmargls);

M = M1 - 1;

logmargm = do.call("cbind",logmargls);

J = dim(logmargm)[1];

xm = apply(logmargm,2,FUN = function(logmarg){

thmax = max(logmarg);
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return(exp(logmarg-thmax))

})

thmax = apply(logmargm,2,FUN = function(logmarg){

return(max(logmarg))

})

cind = M1;

x3 = xm[,cind];

x2 = xm[,(cind-1)];

sp = sumprod12(x2,x3);

j = M;

while (j > 1) {

x1 = xm[,(j-1)];

sp123 = sumprod12(x1,sp);

sp = sp123;

j = j - 1;

}

smarg = sum(sp);

logmarg = log(smarg) - M1*log(J) + sum(thmax);

return(logmarg);

}

Listing 1: R function to calculate the log marginal likelihood for a given set of change points.

Another key ingredient into our approach is the set of potential change points:

Cm =
{
(t1, t2, . . . , tm) | 1 < t1 < t2 < · · · < tm ≤ T

}
.

In generating this set, it is advisable to impose the restriction that ti − ti−1 ≥ n0, where

n0 represents some minimum segment length. The idea behind this constraint is to ensure

reliable model estimation within each segment and also to reflect the belief that structural

breaks occur relatively infrequently. We have written an efficient R function to generate

this set, for m ≤ 4. In one of our applications, where T = 626, n0 = 120 and m = 3,

the cardinality of C is 518665. Although this is a quite big set, one can use parallelized

computations to efficiently handle the load.

makechangepoints = function(T, startdate, m, n0) {

cfgs = list()

idx = 1

fl = T - n0 * m

cp = numeric(m)

for (s1 in seq(n0, fl)) {

cp[1] = s1

for (s2 in seq(s1 + n0, T - n0 * (m - 1))) {

13



cp[2] = s2

if (m > 2) {

for (s3 in seq(s2 + n0, T - n0 * (m - 2))) {

cp[3] = s3

if (m > 3) {

for (s4 in seq(s3 + n0, T - n0)) {

cp[4] = s4

cfgs[[idx]] = cp

idx = idx + 1

}

} else {

cfgs[[idx]] = cp

idx = idx + 1

}

}

} else {

cfgs[[idx]] = cp

idx = idx + 1

}

}

}

scfgs = do.call(rbind, cfgs)

sl = apply(scfgs, 1, function(cp) c(cp[1], diff(cp), T - tail(cp, 1)))

dts = seq(startdate, by = 1/12, length.out = T)

pdts = as.character(format(as.yearmon(dts), "%b %Y"))

cpls = lapply(seq_len(nrow(scfgs)), function(i) pdts[scfgs[i, ]])

names(cpls) = sapply(cpls, function(e) paste(e, collapse = " | "))

list(cpls = cpls, nsls = split(t(sl), seq_len(ncol(sl))))

}

Listing 2: R function to create a list of possible change points.

3. Simulation study

We conduct two sampling experiments. For realism, each experiment is matched to

the real data that are analyzed in the next section. Those data consist of 726 monthly

observations on the FF6 factors. The first 100 of those observations are taken as the training

sample for the prior. This sample is fixed in the sampling experiments and is not simulated.

On the remaining 626 observations we run our change point test, first with one change point

and then we two change points and use the best fitted models to simulate 100 data sets.

14



3.1. Design 1

This is with a single change point. On the real data, according to our test, the break

occurs at May 1998. The best fitted models at the posterior mean of the parameters are as

follows. On the left of the split (the first segment),

Mkt

SMB

HML

RMW

CMA

MOM


=



0.006

0.0015

0.005

0.0026

0.0034

0.0088


+


u1

u2

...

u6



where u ∼ N(0,L1L
′

1) and

L1 =



0.0455 0 0 0 0 0

0.0069 0.0281 0 0 0 0

−0.0109 0.0014 0.0244 0 0 0

0.0012 −0.0041 −0.0065 0.0131 0 0

−0.0081 2e− 04 0.0111 −0.0029 0.0108 0

0.0011 −0.0062 −0.005 0.0015 0.005 0.0322


To the right of the split (the second segment), the best model at the posterior mean of the

parameters is 
Mkt

SMB

HML

RMW

CMA

 =


0.006

0.0021

7e− 04

0.0035

0.0022

+


u1

u2

...

u5


where now

L2 =


0.0475 0 0 0 0

0.0086 0.031 0 0 0

−0.0024 0.0024 0.0354 0 0

−0.0107 −0.0115 0.0111 0.0225 0

−0.0068 0.0022 0.0144 −0.0011 0.0171


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and

[
MOM

]
= Γ


Mkt

SMB

HML

RMW

CMA

+ ε

where

Γ =
[
−0.3296 0.1865 −0.5922 0.1901 0.4024

]
and ε ∼ N(0, 0.0472). Thus, in this design, the risk factor set goes from six to five. The

parameters of the models also change, but by relatively small amounts. We have written out

the models to ease replication, but also to highlight the difficult problem at hand. We do

not know where this break occurs and we do not know which of the 63 models is generating

the data to the left of any possible split or to the right of the split.

We generate 100 data sets of length 626 from Design 1. For each data set, we let C1
consist of 387 months (starting from October 1981 and going to December 2013) and we

record the change point detected by our marginal likelihood based test. Then across the

1000 data sets, we calculate the empirical distribution of these detected change points. This

distribution is exhibited in Figure 1. The empirical distribution concentrates on the true

value of the change point, demonstrating the effectiveness of the proposed test.

3.2. Design 2

In this design we consider two change points. The timing of the change points and the

parameters of the model are matched to the data. In the first segment, which runs from

August 1971 to July 1998, we have six risk factors generated according to

Mkt

SMB

HML

RMW

CMA

MOM


=



0.006

0.0013

0.0049

0.0026

0.0033

0.0091


+


u1

u2

...

u6


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Figure 1: Design 1: Empirical distribution of detected change points, based on 100 simulated data sets and
a set of potential change points C1 consisting of 387 months. The empirical distribution is plotted for the
months with non-zero empirical probability. The true change point occurs at May 1998. The empirical
distribution concentrates at this point.

and the lower triangular cholesky factor of Ω1 is

L1 =



0.0454 0 0 0 0 0

0.0069 0.0282 0 0 0 0

−0.0109 0.0016 0.0244 0 0 0

0.0011 −0.0042 −0.0065 0.0131 0 0

−0.0081 3e− 04 0.0111 −0.0028 0.0109 0

0.0012 −0.0066 −0.0051 0.0013 0.0046 0.0323


Then, in the second segment, that runs from August 1998 to March 2009, we have two

risk factors generated according to the model[
SMB

RMW

]
=

[
0.0046

0.0042

]
+

[
u1

u2

]

where

L2 =

[
0.0377 0

−0.0213 0.0338

]
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and four non risk factors generated as
Mkt

HML

CMA

MOM

 =


−0.174 −0.7817

0.1641 0.6673

0.1649 0.3294

0.5389 0.3838


[
SMB

RMW

]
+


ε1

ε2

ε3

ε4


and the lower triangular cholesky factor of Σ2 is

L2,y.x =


0.0417 0 0 0

0.0037 0.0299 0 0

−0.0075 0.0138 0.0186 0

−0.0165 −0.0149 0.0025 0.0539


Finally, in the third segment, going from April 2009 to December 2023, we again have

two risk factors. The data generating process for the risk factors is[
Mkt

RMW

]
=

[
0.0112

0.0027

]
+

[
u1

u2

]

L3 =

[
0.0454 0

−0.0019 0.0201

]

and for the non risk factors it is
SMB

HML

CMA

MOM

 =


0.2089 −0.5027

0.0856 0.0502

−0.0381 0.1028

−0.3631 −0.0134


[
Mkt

RMW

]
+


ε1

ε2

ε3

ε4



L3,y.x =


0.0236 0 0 0

0.0107 0.0318 0 0

0.0032 0.0138 0.0156 0

−0.0099 −0.0101 0.01 0.0395


We now generate 100 data sets of length 626 from Design 2. For each data set, the set of

potential change points C2 consists of 35,778 pairs of months (starting from October 1981 and
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going to December 2013). The optimal change point is found by applying our test to each

of these possible change points and selecting the one with the highest marginal likelihood.

This test is repeated for each of the 100 simulated data sets. The empirical distribution of

the detected change points for pairs of points with non-zero empirical probability is given in

Figure 2. The empirical distribution concentrates on the pair July 1998 and February 2009.

The first change point in this pair is correct and the second is off by a month. Given that

the second change point is during the period of the 2008-2009 financial crisis, and Design 2

is matched to the data at that time, it is not surprising that the precise change point during

that crisis is difficult to narrow down. Nonetheless, the ability of the test to get this close

to the true value is remarkable.
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Figure 2: Design 2: Empirical distribution of detected change points, based on 100 simulated data sets and
a set of potential change points C2 consisting of 35778 pairs of months. The empirical distribution is plotted
for the subset of 35778 pairs of months with non-zero empirical probability. The true change point occurs
at July 1998 and March 2009. The empirical distribution concentrates correctly on the first change point
and is off by a month for the second change point.

4. Factor selection

This section first describes our data before detailing our results on evidence of breaks and

regime-specific factor selection. Finally, we discuss implications for estimates of time-varying

risk premia and market prices of risk.
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4.1. Data

Our analysis centers on the six factors introduced by Fama and French (2018), with

detailed descriptions provided in Table 1. The data, spanning from August 1963 to December

Table 1: Definitions of factors used in the study. This Table defines how the factors used in our study
are constructed.

Factors Definitions

MKT the excess return of the market portfolio
SMB the return spread between diversified portfolios of small size and big size stocks
HML the return spread between diversified portfolios of high and low B/M stocks
RMW the return spread between diversified portfolios of stocks with robust and weak profitability
CMA the return spread between diversified portfolios of stocks of low (conservative) and high

(aggressive) investment firms
MOM the return spread between diversified portfolios of stocks with high and low returns over the

previous 12 months

2023, is sourced from Ken French’s website and consists of 726 monthly observations. Of

these, the initial 100 months are designated as the training sample to construct the prior for

each segment. The remaining 626 months are utilized for estimation and inference.

4.2. Rolling window

Bessembinder et al. (2021) also consider time variation in the factor zoo. They select a

factor if the intercept of an OLS regression of the factor on the MKT factor has a t-statistic

greater than 3.0. Then, they apply this using a fixed 60-month rolling window approach

throughout their sample to select factors over time.

Although there may be occasional shifts in the set of risk factors that explain the cross

section of expected returns due to, for example, changes in monetary policy, regulation, or

technological innovations, having factors enter and exit the set of true factors every month

is difficult to motivate from an economic standpoint. The rolling window causes factors to

enter and exit the selected set in a noisy manner, which is difficult to motivate economically.

To see how the rolling window approach causes factors to enter and exit the set in a noisy

fashion, each window of Figure 3 displays whether the factor is selected (indicator variable

equals one) or omitted (indicator variable equals zero) at a given point in time, from the

best model using the Chib and Zeng (2020) scan on data from rolling windows of length 60

months. There are 567 such rolling windows from Nov 1971 to Dec 2023. Forty eight of

those 567 windows are labeled on the x-axis. If one uses these rolling window estimates to

calculate the corresponding total number of risk factors selected for each interval, one sees

that the number of factors selected in the model varies between one and six and this number
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Figure 3: Each subfigure displays whether the factor is selected (indicator variable equals one) or omitted
(indicator variable equals zero) at a given point in time, from the best model using the Chib and Zeng (2020)
scan on data from rolling windows of length 60 months. There are 567 such rolling windows from August
1971 to December 2023. Forty eight of those 567 windows are labeled on the x-axis.

is changing very frequently. Such frequent changes in the risk factor set are hard to motivate

on economic grounds.

This evidence can be used as motivation for our methodology, which restricts the number

of shifts in the set of risk factors, assuming that the set is stable between structural breaks.

4.3. Evidence of breaks

We now determine the evidence in support for single, double and triple breaks. We

construct the sets C1, C2 and C3 using Listing 2 with T = 626, startdate of Nov 1971 and

n0 = 60. The cardinality of these sets is 387, 35778 and 518665, respectively. We could

also consider m = 4 break points and would likely detect one around the time of the Covid-

Pandemic, but that would leave us with too few observations in the last segment to do valid
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estimation of the different models. For data paucity reasons, therefore, we only consider up

to 3 break points.

The top panel of Table 2 displays the log marginal likelihoods for the optimal break dates

when assuming different numbers of breaks from zero to three. We see that three breaks

Table 2: Number of breaks: Log marginal likelihoods under different numbers of breaks and their locations
estimated using our methodology on the six factor model of Fama and French (2018) using data from Nov
1971 through Dec 2023. The row displayed in bold font corresponds to the optimal number and timing of
breaks.

No. of breaks Log marg lik Break dates

0 8022.578
1 8223.860 May 1998
2 8312.709 Jul 1998 Mar 2009
3 8349.452 Mar 1982 Jul 1998 Mar 2009

3 8349.449 Nov 1982 Jul 1998 Mar 2009
3 8349.135 Feb 1982 Jul 1998 Mar 2009
3 8348.925 Oct 1982 Jul 1998 Mar 2009
3 8348.898 Apr 1982 Jul 1998 Mar 2009
3 8348.844 May 1982 Jul 1998 Mar 2009

have the highest logarithmic marginal likelihood and, therefore, are clearly preferred to fewer

numbers of breaks. The optimal timing for these three breaks is March 1982, July 1998, and

March 2009. Interestingly, the identity of the first change point stays almost intact when we

go two change points and the identity of those change points stays almost the same when we

bring in the third. This shows that the change points we identify are robust to the number

of change points.

The break dates we find correspond closely to major events such as the end of the 1979-

1982 “monetarist policy experiment” implemented by Paul Volcker following the oil price

shocks of the 1970s, the rise of the Internet revolution, and digitization of financial markets

that culminated in the dotcom bubble and subsequent bursting, and the Global Financial

Crisis. The post-2009 data correspond to the current regime and thus these are the data

that are relevant for finding risk factors that are currently pricing the cross section.

The bottom panel of Table 2 displays the log marginal likelihood for three break dates

that are very close to the optimal three break dates. We see in each case that the log

marginal likelihood is slightly lower, and therefore these break dates are dominated by the

optimal ones. Figure 4 illustrates the posterior probabilities associated with the top 30

break date combinations, given the preferred three-break model. The results show a clear

preference for the optimal break dates, which capture nearly 15 percent of the total posterior
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probability. The second most likely combination, which shifts the first break from March

1982 to November 1982, also secures nearly 15 percent of the posterior probability. The

probabilities decline sharply thereafter, with the eighth most likely break date combination

capturing just five percent of the total posterior weight.
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Figure 4: This figure displays the posterior probability assigned to each of the top 30 break date combinations
for the preferred three break model. These are the top 30 of 540274 three break combinations considered.

4.3.1. Instant or gradual changes?

Occasional changes in the set of risk factors could be driven by publication effects

(McLean and Pontiff, 2016) or important regulatory or technological changes. These types

of events are likely to cause the set of risk factors to shift abruptly. Alternatively, risk and

risk premia change more gradually over time, either as a function of business conditions or

as a result of slow-moving changes in the economy. Given that the nature of the change

is unobservable, it is important to incorporate both potential changes, abrupt and gradual,

when estimating changes in the set of risk factors.

Although we focus on inference in this paper on the optimal break date, an important

feature of our Bayesian framework is that the posterior distribution over change points reveals

the uncertainty surrounding the break dates. The uncertainty surrounding the break date

estimate can be incorporated into risk premia and price of risk estimates from the factor
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model.

4.4. Risk factor selection

The first four panels of Table 3 show log marginal likelihoods for the top five models

ranked by log marginal likelihood in the four regimes separated by the optimal three break

dates. A value equal to one (zero) indicates that a factor is selected (omitted). In the first

regime (1971-1982), the optimal model is the one which includes all six potential factors

except the Market factor. This collection of risk factors has a log marginal likelihood of

1695.916. Three of the top five models in this regime omits the market factor, providing

reasonably strong evidence that this factor is not relevant in this regime. The only two

factors that are selected in each of the five top performing models are the profitability factor

and the momentum factor. The upper left window of Figure 5 displays, for this regime, the

log marginal likelihoods for each of the 63 possible models ranked based on the log marginal

likelihood from best (left) to worst (right). The best model, which selects all six factors

except MKT, is shown in blue. Other models of interest are also colored blue. We see that

dense models that include more factors (FF6) tend to perform better than sparse models

(FF3).

The upper left window of Figure 6 displays, for this regime, the number of factors in each

of the 63 possible models that are ranked based on log marginal likelihood from best (left)

to worst (right). The best model along with some notable Fama-French models are colored

blue. The remaining models are colored red. We see that the best performing models (to

the left of the figure) tend to be dense models (toward the top), while the worst performing

models (to the right) tend to be sparse models (toward the bottom). This finding suggests

that dense factor models are preferred to sparse models during this period.

In the second regime (1982-1998), the FF6 model is the best performing model with a log

marginal likelihood of 2863.626. Each of the five best-performing models includes at least

five factors. The profitability factor is again selected in each of the top five models, as is

the market factor. Once again, popular dense models tend to perform well (FF6 and FF5),

while popular sparse models (FF3) tend to perform poorly. In fact, the pattern in which

dense models tend to outperform sparse models is even more striking in this regime (top

right window of Figure 6).

This patterns changes markedly in the final two regimes (post-1998). Here, the preferred

model contains just two factors: size and profitability until 2009, after which it is profitability

and market. The size factor is clearly omitted after 2009. The value and momentum factors

are rarely selected in either of these two regimes.

These findings make a simple, yet novel point. Until 1998, dense models were preferred,
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Table 3: Regime-specific factor selection: The first four panels of this table display log marginal likeli-
hoods for the top five models ranked by log marginal likelihood in the four regimes separated by the optimal
three break dates. A value equal to one (zero) indicates a factor is selected (omitted). The final panel
displays the same information from the model that precludes breaks.

Mkt SMB HML RMW CMA MOM Log marg lik

Nov 1971 - Mar 1982

0 1 1 1 1 1 1695.916
0 1 1 1 0 1 1695.901
1 1 1 1 1 1 1695.563
1 0 1 1 1 1 1695.547
0 1 0 1 1 1 1695.525

Apr 1982 - Jul 1998

1 1 1 1 1 1 2863.626
1 1 1 1 0 1 2861.870
1 0 1 1 1 1 2861.860
1 1 1 1 1 0 2861.667
1 1 0 1 1 1 2861.442

Aug 1998 - Mar 2009

0 1 0 1 0 0 1483.328
1 1 1 1 1 0 1483.132
1 1 0 1 0 0 1482.892
0 1 0 1 1 0 1482.567
0 1 0 1 0 1 1482.518

Apr 2009 - Dec 2023

1 0 0 1 0 0 2316.203
1 0 0 1 0 1 2315.900
1 0 0 1 1 0 2315.282
1 0 0 0 0 0 2315.235
1 0 1 1 1 0 2315.141

Nov 1971 - Dec 2023 (No breaks)

1 0 0 1 1 1 8022.578
1 1 0 1 1 1 8022.235
1 0 1 1 1 1 8020.841
1 1 1 1 1 1 8020.491
1 0 0 0 1 1 8016.994

but since then dense models do not outperform sparse models and, in fact, the best model in

both of the final two regimes selects just two factors. Ignoring breaks conceals this changing

dynamic and would lead one to spuriously believe that dense models are still preferable
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Figure 5: The top four windows of this Figure display, for each of the four regimes, the log marginal
likelihoods for each of the 63 possible models which are ranked based on log marginal likelihood from best
(left) to worst (right). The best model (top-left circle in each panel) and the Fama-French models are colored
blue. The lower panel displays the same information for the model that precludes breaks.

today. This is because using pre-break data tends to detect factors that were once relevant

but not at present. The implication of this overlooked finding is that there has been a clear

shift toward parsimony, and researchers should avoid using pre-break data when selecting

factors. Some recent studies that identify a large number of risk factors may in part reflect

this phenomenon: several factors in those models may simply be fitting prebreak data that

are no longer relevant. We recommend that researchers use our approach or use only the

26



Top Model:SMB+HML+RMW+CMA+MOM
FF6

FF5

FF3

1

2

3

4

5

6

0

2
0

4
0

60

Model Rank

N
u
m
b
er

of
F
ac
to
rs

Nov 1971-Mar 1982

Top Model:Mkt+SMB+HML+RMW+CMA+MOM

FF5

FF3

1

2

3

4

5

6

0

2
0

4
0

60

Model Rank

Apr 1982-Jul 1998

Top Model:SMB+RMW

FF5

FF6

FF3

1

2

3

4

5

6

0

20 40 60

Model Rank

N
u
m
b
er

of
F
ac
to
rs

Aug 1998-Mar 2009

Top Model:Mkt+RMW

FF5

FF3

FF6

1

2

3

4

5

6

0

20 40 60

Model Rank

Apr 2009-Dec 2023

Top Model:Mkt+RMW+CMA+MOM

FF6

FF5

FF3

1

2

3

4

5

6

0

20 40 60

Model Rank

N
u
m
b
er

of
F
ac
to
rs

Nov 1971-Dec 2023

Figure 6: The top four windows of this Figure display, for each of the four regimes, the number of factors in
each of the 63 possible models which are ranked based on log marginal likelihood from best (left) to worst
(right). The best model and the Fama-French models are displayed in blue. The lower panel displays the
same information for the model that precludes breaks.

post-1998 data in their future analyses.

4.5. Factor risk premia and market prices of risk

Our approach also generates estimates of factor risk premia and their market prices of

risk, which are allowed to vary across regimes.

The four top panels of Table 4 present estimates of the risk premia of the factors selected
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Table 4: Risk premia estimates. The five panels of this table display, for each of the four regimes and
the full period, a range of risk premia estimates for the factors selected by the optimal model in that regime.
Specifically, we report the posterior mean and standard deviation of the risk premia estimates. We also
report the lower and upper estimates that correspond to the 95 percentiles of the posterior distribution.

Mkt SMB HML RMW CMA MOM
Nov 1971 - Mar 1982

postmean 0.0053 0.0061 -0.0003 0.0039 0.0103
postsd 0.0029 0.0025 0.0015 0.0016 0.0035
lower -0.0003 0.0013 -0.0032 0.0007 0.0034
upper 0.0110 0.0112 0.0026 0.0070 0.0172

Apr 1982 - Jul 1998

postmean 0.0092 -0.0010 0.0039 0.0044 0.0028 0.0081
postsd 0.0029 0.0018 0.0017 0.0009 0.0012 0.0019
lower 0.0034 -0.0045 0.0006 0.0026 0.0005 0.0043
upper 0.0149 0.0024 0.0071 0.0061 0.0052 0.0119

Aug 1998 - Mar 2009

postmean 0.0046 0.0042
postsd 0.0031 0.0033
lower -0.0016 -0.0022
upper 0.0107 0.0108

Apr 2009 - Dec 2023

postmean 0.0112 0.0027
postsd 0.0032 0.0014
lower 0.0048 -0.0001
upper 0.0175 0.0056

Nov 1971 - Dec 2023

postmean 0.0060 0.0031 0.0029 0.0059
postsd 0.0018 0.0009 0.0008 0.0017
lower 0.0025 0.0013 0.0013 0.0026
upper 0.0096 0.0049 0.0044 0.0093

by the optimal model in each of the four regimes. Specifically, we report the posterior

mean and standard deviation of the risk premia estimates, along with the lower and upper

bounds corresponding to the 95th percentiles of the posterior distribution. The bottom panel

displays the same information for the model that precludes breaks. Figure 7 illustrates the

corresponding estimated posterior densities of the risk premia.

We see that the equity premium is estimated to be about seven percent annualized when

precluding breaks. Accounting for breaks, however, induces some time variation around

this value, with the equity premium generally rising throughout the sample and reaching its
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Figure 7: The top four windows of this Figure display, for each of the four regimes, the estimated posterior
density risk premia plots for each of the selected risk factors in the optimal model. The bottom panel displays
the same information for the model that precludes breaks.
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highest value in the most recent regime (post-1998).

The only factor consistently selected throughout the sample and in the current regime

is the profitability factor. The estimated premium on this factor has shown significant time

variation, rising from a low value to approximately 5% between 1982 and 2009, before mod-

erating somewhat. In contrast, the no-break model smooths through these regime changes,

estimating a steady premium of around 3.5% throughout the sample period.

We also present clear evidence of a decrease in the value premium over time, aligning with

findings documented in previous studies (Fama and French, 2021). Specifically, we observe

that the value premium drops from about seven percent prior to 1982 to about five percent

from 1982 through 1998. Since 1998, the value factor has been omitted altogether.

The size factor has declined over time and is omitted altogether in the final regime. In

the most recent regime, the market and profitability factors are the only two selected, both

generating significant risk premia. In summary, we find evidence of time variation in all

six-factor risk premia.

Regarding the market prices of the factor risks, which are the weights of the risk factors

in the SDF, Table 5 shows clear evidence of time variation in the market price of risk for the

six factors that is obscured when breaks are excluded.

5. Pricing performance and investment implications

5.1. Pricing of the excluded factors

Having identified optimal regime-specific collections of risk factors, we next investigate

whether the selected factors in each regime can price the omitted ones. To evaluate pricing

ability, we fit a series of regression models with each excluded factor as the dependent

variable and the selected risk factors as the independent variables. This analysis is conducted

separately for each regime, using only the data and factors selected from that regime. For

each excluded factor, two Bayesian regressions are estimated: one with an intercept and one

without. The marginal likelihood of each model is then calculated using the method of ?.

If the log marginal likelihood of the model without an intercept exceeds that of the model

with an intercept by more than 0.69, then we can conclude that the omitted factor is priced

by the selected factors in that regime. Formally, exceeding this threshold indicates that the

posterior odds of the model without an intercept relative to the model with an intercept are

at least 2:1.4 The results of applying this test to each of the excluded factors are shown in

Table 6.

4Frequentist tests are based on sampling distributions of estimators, which require the involvement of
unseen samples beyond the one that is observed. The Bayesian test is only conditioned on the observed data.
In addition, the Bayesian test is based on the estimation of both models, not just one model as in a frequentist
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Table 5: Price of risk estimates. The five panels of this table display, for each of the four regimes and the
full period, a range of market price of risk estimates for the factors selected by the optimal model in that
regime. Specifically, we report the posterior mean and standard deviation of the risk premia estimates. We
also report the lower and upper estimates that correspond to the 95 percentiles of the posterior distribution.

Mkt SMB HML RMW CMA MOM
Nov 1971 - Mar 1982

postmean 6.5750 8.9706 17.9286 12.1548 8.1802
postsd 3.0189 5.4385 8.1384 8.6793 2.4963
lower 0.7358 -1.6744 2.4894 -4.4251 3.4067
upper 12.6128 19.8437 34.4599 29.4631 13.1993

Apr 1982 - Jul 1998

postmean 11.5066 10.5204 14.2818 39.0561 18.5102 8.1112
postsd 2.4759 3.8996 5.5054 7.7194 8.0436 3.1916
lower 6.7871 2.9384 3.6574 24.3880 3.0371 1.9429
upper 16.4632 18.2869 25.1311 54.7345 34.6653 14.5081

Aug 1998 - Mar 2009

postmean 6.8301 6.1351
postsd 2.7811 2.6404
lower 1.4851 1.1631
upper 12.4653 11.4263

Apr 2009 - Dec 2023

postmean 5.8837 8.0133
postsd 1.7294 3.8458
lower 2.5758 0.6138
upper 9.3846 15.7251

Nov 1971 - Dec 2023

postmean 6.0283 7.0108 11.0056 3.9490
postsd 1.0366 1.8722 2.2118 0.9831
lower 4.0146 3.4249 6.7792 2.0402
upper 8.0640 10.7145 15.3833 5.8903

The results for the new risk factors are remarkable. In every regime and for each omitted

factor, the differences in log-marginal likelihoods are more than 0.69, implying that the

model without an intercept is preferred and the selected set of factors in each regime price

all of the omitted factors. This gives confidence that our method selects the appropriate set

test of alpha. Finally, the marginal likelihood is a measure of out-of-sample predictive performance of each
model, unlike a t-test which measures the extent of departure of an estimator from the null of zero in unseen
samples. Due to these differences, frequentist tests can yield different conclusions.
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Table 6: Pricing of the omitted factors by the selected factors in each regime: log-marginal
likelihoods of regression models without and with an intercept. In each regime, the right-hand
side variables are the selected risk-factors; the left-hand side variable is the omitted factor displayed in
the corresponding column. We report the difference between the regression without an intercept and the
regression with an intercept.

Mkt SMB HML RMW CMA MOM

Nov 1971 - Mar 1982

risk factors 0 1 1 1 1 1
without alpha 180.8431
with alpha 177.5044
difference 3.3387

Apr 1982 - Jul 1998

risk factors 1 1 1 1 1 1
without alpha
with alpha
difference

Aug 1998 - Mar 2009

risk factors 0 1 0 1 0 0
Without alpha 198.9939 223.0305 256.5941 156.1655
With alpha 197.3436 221.0403 254.7121 154.6532
Difference 1.6503 1.9902 1.8821 1.5123

Apr 2009 - Dec 2023

risk factors 1 0 0 1 0 0
without alpha 350.2882 287.9503 353.9200 157.9016
with alpha 348.6746 286.7828 353.0529 156.5496
difference 1.6136 1.1675 0.8671 1.3520

of risk factors in each regime.

5.2. Time-varying factor allocations in maximum Sharpe ratio portfolio

The weights of the maximum Sharpe ratio portfolio that is constructed from the selected

set of risk factors are shown in Figure 8. The solid blue line shows the time-varying estimated

weights from the breakpoint model and the dashed red line gives time-invariant weights from

the no-break model. We find clear evidence of time-variation in the weights allocated across

the six factors in the maximum Sharpe ratio which is concealed when breaks are precluded.

We see that the optimal weighting of the market and profitability factors have increased

over time such that they are about 40 and 60 percent now. The remaining four factors have

generally experienced declines from about 20 percent at the start of the period to zero now,

although size received a large 50 percent allocation in the third regime. The no-break model

allocated about 40 percent of the weight to CMA with the remaining 60 percent split about
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Figure 8: Each window of this Figure displays the time-varying (solid blue line) and time-invariant (dashed
red line) estimated weights for the corresponding factor labeled in the subtitle in the maximum Sharpe ratio
portfolio constructed from the selected factors. The time-varying estimates are from the selected model in
each regime and the time-invariant estimates are from the same model that precludes breaks.

equally between MKT, RMW, and MOM. These findings have important implications for

investment strategies.

6. Conclusion

An extensive literature has proposed a multitude of factors that claim to price the cross

section of expected returns. This proliferation of factors has led to a more recent literature

that attempts to impose discipline on these factors in various ways and hence tame the ‘factor

zoo’. This paper operationalizes a simple yet novel point, overlooked in the literature, that

it is important to account for occasional infrequent shifts or breaks in the set of risk factors.

This is because using all available historical data tends to detect factors that were once

relevant but are no longer, thereby overstating the relevant set of factors.
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Since the date on which the risk factor set changes is unknown, it must be estimated.

Existing breakpoint methods are not suitable for this setting, since they only allow the

parameters of the model to change, but assume the model itself remains the same over time.

Similarly, existing model selection methods do not account for changes in the model over

time. We develop the first formal estimation procedure for this setting (either Bayesian or

frequentist) that performs an exhaustive search to identify the optimal risk factor collection

that is allowed to change at multiple unknown times.

Empirically, we find evidence of three breaks in a six-factor model (Fama-French 5-

factors plus momentum) since 1963 that occur in 1982, 1998, and 2009. Our break dates

correspond approximately to the end of the “monetarist policy experiment” implemented

by Paul Volcker, the surge of the Internet revolution, and digitization of financial markets,

and the Global Financial Crisis, suggesting that the optimal set of risk factors can undergo

major changes in the presence of such events. We document clear evidence of a shift towards

sparse/parsimonious factor models in the post-1998 period. Since the GFC, only two factors

(MKT and RMW) have been preferred.

The approach that precludes breaks and that performs factor selection using all the

available data spuriously detects an additional two factors (MOM and CMA) that were only

relevant until 1998. Our findings have clear implications for the ‘factor zoo’ literature: those

who do not use only the most recent data when conducting factor selection will spuriously

detect additional factors that are no longer relevant. This offers one partial explanation for

the ‘factor zoo’: too many factors are being selected because they are fitting pre-break data.

In addition, sparse/parsimonious models appear to be favorable for investors who wish to

build investment strategies based on such factors today.

Our framework should open new avenues for future research on the challenging problem

of detecting risk factors. A R package to implement the methodology is available from the

home page of the first author.
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