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Abstract

We develop a new approach to select factors that allows the set to change at multiple un-

known break dates. In a six-factor model since 1963, we document a marked shift towards

parsimonious models in the last two decades. Prior to 2005, five or six factors are selected,

but just two are selected thereafter. This finding offers a simple implication for the factor zoo

literature: ignoring breaks detects additional factors that are no longer relevant. Moreover,

all omitted factors are priced by the selected factors in every regime. Finally, the selected

factors outperform popular factor models as an investment strategy.
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1. Introduction

“US small-cap stocks are suffering their worst run of performance relative to large companies

in more than 20 years [...] The Russell 2000 index has risen 24% since the beginning of 2020,

lagging the S&P 500’s more than 60% gain over the same period. The gap in performance

upends a long-term historical norm in which fast-growing small-caps have tended to deliver

punchier returns for investors who can stomach the higher volatility.”1 (Financial Times,

2024)

The empirical literature on asset pricing has proposed a large number of factors that

claim to explain the cross-section of expected stock returns (Cochrane 2011). More recently,

the field has been dealing with how to handle this proliferation of factors. Various potential

solutions have been offered (Feng et al. 2020).

This paper presents an intuitively simple point of view that has somehow been overlooked

in the literature. If the set of factors that explain the cross section of expected returns is

varying over time, it is critical to account for this feature when evaluating which factors

are relevant at any given time.2 Otherwise, using all available historical data will tend to

pick up factors that were important at some point in the past, but are not risk factors at

present. As a simple example, imagine that only two factors are relevant for the first half

of the sample and that two different factors are relevant in the second half. The common

approach in the literature of using all the historical data will tend to suggest that all four

factors are relevant for the entire sample, when in fact no more than two are relevant at any

given time. This may partly explain the problem of the “factor zoo” (Harvey et al. 2016;

1This quote is from a March 27, 2024 Financial Times article entitled ‘US small-caps suffer worst run
against larger stocks in more than 20 years.’

2There is little doubt that the set of risk factors change. This can be seen with the Fama-French set of
risk factors, which have changed twice over time. Different economic explanations can support such changes,
for example, the publication effect of Schwert (2003), and/or the adaptive efficient market hypothesis of Lo
(2004). The set of risk factors may also change due to, for example, new technologies, shifts in monetary
policy regimes, or regulations.
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Hou et al. 2020), as well as the declining performance of risk factors in a comprehensive set of

anomalies (McLean and Pontiff 2016). Therefore, it is important to consider the possibility

of time variation when selecting factors.

If one knew the time at which the set of factors changes, one could discard the old irrel-

evant data with a subsample split. In reality, however, this date is not known and therefore

must be estimated.3 Furthermore, the longer the sample period under consideration, the

more likely it is that there may be multiple times at which the set changes, which further

complicates the problem. This setting is technically challenging because one needs to es-

timate both the times at which the set of relevant factors changes and the set of relevant

factors within each subperiod. In other words, both the asset pricing model and the parame-

ters of that model change.4 In this paper, we propose a solution to this challenging problem

by devising the first method (Bayesian or frequentist) that can simultaneously estimate both

the times at which the model changes and how the parameters of the model change, taking

the guesswork out of how to determine the subsample splits (or regimes).

Our methodology generalizes the framework of Chib and Zeng (2020) – who developed

a Bayesian model selection approach for factor selection – by blending it with the Bayesian

breakpoint approach in the context of model uncertainty developed by Chib (2024). This

methodology uses a single unified framework, with priors informed by asset pricing theory,

to estimate the selected risk factors, allowing this set to change at multiple unknown break

dates. The Bayesian approach is well suited to this problem because it can allow for both

abrupt and gradual changes, depending on the uncertainty surrounding the break date. A

3Green et al. (2017), for example, impose a predetermined subsample split in the early 2000s and find
that the number of relevant characteristics has declined over time.

4This setting is more complex than standard breakpoint problems in which the model parameters shift
after a break but the model itself (i.e. the selected factors) remains unchanged. A widely applied approach
for this setting was developed in Chib (1998), first applied in the finance setting by Pástor and Stambaugh
(2001) and subsequently in many other papers. Standard breakpoint problems have been applied to a range
of issues in empirical asset pricing, such as return predictability (Viceira 1997; Lettau and Van Nieuwerburgh
2008; Rapach et al. 2010; Smith and Timmermann 2021), estimating time-varying risk premia (Pástor and
Stambaugh 2001; Smith and Timmermann 2022), and dating the integration of world equity markets (Bekaert
et al. 2002).
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Bayesian approach also inherently protects against problems associated with multiple tests

(Kozak et al. 2020; Jensen et al. 2023; Bryzgalova et al. 2023). We perform an exhaustive

search across all possible asset pricing models implied by the starting set of risk factors

and all possible break dates for a given number of breaks, identifying the optimal subset of

potential factors that can price most (if not all) of the remaining factors in each regime.5 Our

exhaustive search circumvents the risk of getting stuck at local maximia that is associated

with stochastic search algorithms.6

In our empirical analysis, we focus on the six-factor model of Fama and French (2018).7

Using monthly data from July 1963 through December 2023, our method identifies three

breaks corresponding to a regime lasting 15 years on average.8 The breaks occur in March

1975, October 1995, and September 2005.9

The set of risk factors changes after each of these breaks. At least five factors are selected

in the first three regimes (up to 2005), while only two factors (market and profitability) are

selected in the final regime (post-2005).10 In contrast, the preferred model when using all

historical data is a four-factor model that excludes size and value, which shows that failing

to discard pre-break data can lead to a risk factor set being selected that is not the relevant

one for pricing in the current regime.11

5Our method also performs inference over the number of breaks.
6While the conventional approach to test the pricing ability of risk-factors is to use various test assets or

portfolios, we leverage the intuition that if a subset of the available factors are found to be risk factors, then
those factors, by virtue of being risk factors, should price the complementary set of non risk factors.

7The model scan is therefore over 63 models, including the popular risk-factor collections such as the 3-
and 5-factor Fama-French models, but it also includes all other combinations of risk-factors that have not
previously been considered.

8We consider other numbers of breaks, but find three to be optimal.
9The break in 1975 corresponds to the oil price shocks of the 1970s and the corresponding high inflation-

ary period that was only stopped when a sharp contractionary monetary policy regime was subsequently
implemented. October 1995 coincides with the Internet revolution and the tech boom on the NASDAQ
(Griffin et al. 2011). This break also coincides with a period of dramatic changes in market efficiency that
has been documented by Chordia et al. (2011). The September 2005 break corresponds to a little before the
onset of the Global Financial Crisis.

10All but the size factor are selected in the first regime (1963-1975), all six factors are selected in the
second (1975-1995), and all but the value factor are selected in the third (1995-2005).

11This selected model is unable to price one of the omitted factors – size – using the whole sample of
available data, highlighting its shortcomings. Furthermore, using the entire data sample, our approach
reveals that the momentum factor is not priced by the Fama-French 5-factor model; and the momentum,
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Moreover, the median number of factors selected in the best-performing ten models in

the three regimes up to 2005 is five, but this falls to 2.5 in the final regime. This clearly

indicates a shift to more parsimonious models in the most recent two decades.12 In fact, the

Capital Asset Pricing Model (CAPM) – which performs poorly up to 2005 – is in the top ten

models after 2005 and outperforms the 3- and 5-factor models of Fama-French (and both of

those models plus momentum).

In every regime, each of the omitted factors is priced by the selected factors, suggesting

that they are spanned by the smaller subset of selected factors and can therefore be confi-

dently excluded. Post-2005, constructing the tangency portfolio that consists of the selected

factors and the individual stocks that are not priced by those factors generates a Sharpe ratio

of 2.74. This is much higher than the corresponding Sharpe ratios (which range from 0.87

to 1.82) generated from the 3- and 5-factor models of Fama-French, the same two models

plus momentum and the CAPM. The two risk factors that our procedure has isolated since

2005 – market and profitability – capture important systematic risks. The role of the market

factor as a systematic risk factor is arguably unquestioned. The profitability factor captures

the part of the cross section of expected returns that covaries with profitability. In addition,

our methodology would be useful for detecting any change in the current set of risk factors

in the future.

Finally, our methodology provides regime-specific estimates of factor risk premia and their

price of risk.13 Mounting empirical evidence of sizeable risk premia associated with these

factors has important implications for investment strategies and has markedly changed the

investment landscape, leading to the proliferation of mutual funds specializing in certain

investment styles such as small caps or value stocks. The appeal of such strategies depends

investment, and profitability factors are not priced by the Fama-French 3-factor model.
12Kelly et al. (2019) use Instrumented Principal Components Analysis to document that just five latent

factors can outperform existing factor models.
13A small subset of studies that estimate time-varying risk premia include Ferson and Harvey (1991);

Freyberger et al. (2020), Gu et al. (2020), Gagliardini et al. (2016), Ang and Kristensen (2012), and Adrian
et al. (2015).
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not only on the magnitude of the associated risk premia, but also on the stability of their

risk premia over time.14 We find clear time-variation in the risk premia for all six factors

since 1963. For example, the value premium was 5.6% from 1963 to 1975 but decreased to

4.3% from 1975 to 1995 (Fama and French 2021). Since 1995, the value factor has not been

selected as a risk factor. The implied weights on the value factor in the maximum Sharpe

ratio portfolio therefore declined from 18 percent (1963-1975) to 15 percent (1975-1995)

and have been zero since. This indicates that high allocations to value stocks have become

notably less attractive over time.

Bessembinder et al. (2021) estimate factor risk premia using a fixed 60-month rolling

window and document clear time-variation in the number of factors selected over time.

However, as we show in our empirical analysis, a rolling window leads to factors entering and

exiting the SDF very frequently, sometimes on a monthly basis. The economic motivation

for this behavior, however, is difficult to justify. This is why a formal method is needed

to identify the set of risk factors that is stable within a regime, but is allowed to shift

occasionally over time. We present the first approach (either Bayesian or frequentist) to do

so.15

The remainder of the paper is organized as follows. In Section 2 we detail our method-

ology. In Section 3 we present evidence of breaks and the regime-specific selected factors

and their risk premia estimates. Section 4 discusses the pricing performance and investment

implications of our selected factor collection and Section 5 concludes.

14Factor premia may time-vary due to investors differing in sophistication or investment objectives, en-
abling the marginal investor to differ across stocks and over time for a given stock. Individual investors
can form mean-variance portfolios, while others may pursue very large payoffs. Some investors may follow
“buy-and-hold” strategies, and others may periodically rebalance to target certain weights.

15Bianchi et al. (2019) also document evidence of time-varying sparsity in factor models.
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2. Methodology

We now outline the economic motivation for breaks in the risk factor model. Then, to build

intuition, we explain how the methodology works for the no-break and single-break cases,

before explaining our methodology for the most general case in which the subset of risk

factors can shift across an unknown number of breaks that occur at unknown times. Finally,

we detail the prior specification.

2.1. Economic Sources of Breaks in the Factor Model

Formally, suppose that for a time series sample from t = 1, . . . , T , we have data {ft}, t ≤ T

on a set of K (potential) risk factors. Suppose that the stochastic discount factor (SDF) at

time t is given by

Mt = 1− b′(ft − λ)

where b is the vector of market prices of factor risks and λ is the vector of factor risk-premia.

In an environment where the underlying firm-level production function is subject to breaks,

due to technological innovations, it is more appropriate to assume that firm-level profitability

would depend on a time-varying set of firm-level lagged characteristics. In this situation, the

SDF would be more appropriately characterized by a time-varying SDF

Mt = 1− b′t(ft − λt)

where the market prices and factor risk-premia are time-varying. If we imagine that some

of the lagged characteristics that determine firm-level profitability cease to be significant

for periods of time due to changes in persistent shocks (innovations) to production, this

would imply that some of the elements in the market price vector bt would be zero and the

corresponding elements of ft would drop out of the SDF, that is, cease to be risk factors.
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To describe this situation, let xt ⊆ ft denote a subset of ft with non-zero market prices

of factor risks. Suppose that the market prices bt change at unknown break dates

1 < t∗1 < t∗2 < · · · < t∗m < T (1)

where m (the number of breaks) is also an unknown parameter. In particular, a different set

of risk factors enters the SDF in each regime and thus there are (m+ 1) risk factor sets

x∗
t =



x1
t t ≤ t∗1

x2
t t∗1 < t ≤ t∗2
...

...

xm
t t∗m−1 < t ≤ t∗m

xm+1
t t∗m < t ≤ T.

(2)

The objectives of the analysis are to find

• the number of breaks m ∈ {0, 1, 2, ...,M}

• the timing of the breaks, t∗1, ..., t
∗
m

• and the risk factors in each regime x1
t , ..., x

m+1
t .

We now outline the framework developed by Chib and Zeng (2020) to find risk factors in

the absence of breaks. We then generalize their framework to find risk factors with a single

break in the market price vector (to help build intuition) and then consider the extension to

multiple breaks (which we subsequently take to the data).

2.2. No breaks

Chib and Zeng (2020) develop a Bayesian model scanning approach to determine which

subset of potential risk factors enters the SDF. To do this, they exploit the fact that asset
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pricing theory places restrictions on the joint distribution of factors that enter the SDF and

those that do not. One key restriction is that the non-risk factors should be priced by the risk

factors. One can therefore construct all possible decompositions of the joint distribution of

factors in terms of a marginal distribution of the risk factors and a conditional distribution

of the non-risk factors (imposing the pricing restriction on the latter) and determine by

Bayesian marginal likelihoods which such decomposition is the best.16 The risk factors in

that best decomposition are then taken to be the risk factors best supported by the data.

To isolate the best set of risk factors, consider all possible splits of ft into xt, the risk

factors, and yt, the non-risk factors. These splits produce models that we indicate by Mj,

for j = 1, ..., J = 2K − 1. At time t, the data generating process under Mj is given by

xj,t = λj + uj,t

y
j,t

= Γjxj,t
+ ε

j,t
, t = 1, . . . , T , (3)

where the errors are distributed as multivariate Gaussian

uj,t ∼ N(0,Ωj) , ε
j,t

∼ N(0,Σj). (4)

Let the unknown parameters in this model be denoted by

θj = (λj,Ωj,Γj,Σj) . (5)

Note that each of these models has a distinct set of risk factors and a distinct set of param-

eters.

Apart from λj, the prior of the parameters Ωj,Γj,Σj are derived by change-of-variable

from a single inverse Wishart prior placed on the matrix Ωj in the model where all factors

16Marginal likelihoods are Bayesian objects that are calculated by integrating out the parameters from
the sampling density with respect to the prior of the parameters.
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are risk-factors. The hyperparameters of this single inverse Wishart distribution, and those

of the model-specific λj, are calculated from a training sample (which we take to be the

first 15% of the sample data). The training sample data are subsequently discarded, which

means that it is not used for estimation or model comparison purposes.

Let π (θj) denote the prior on θj. Then, the marginal likelihood of Mj is given by

marglik(f |Mj) =

∫
N(xj|λj,Ωj)N(y

j
|Γjxj

,Σj)dπ (θj) , j ≤ J. (6)

These are closed form as shown in Chib et al. (2020). However, their approach assumes that

the set of risk factors is time-invariant.

2.3. Single break

Assume for now the case of a single break. This break occurs at an unknown location t∗1 that

separates the sample data into regimes s ∈ {1, 2}. A set of risk factors (x1
t ) enters the SDF

in the first regime (from time periods t = 1, . . . , t∗1) and another set (x2
t ) enters in the second

regime (from time periods t = t∗1 + 1, . . . , T ).17 The objective is to estimate the timing of

the break (t∗1) and the identities of the risk factors in the first regime (x1
t ) and the second

(x2
t ) regime.

To infer the break date, we focus on the quantity

marglik(f1,t∗1 , ft∗1+1,T |t∗1) (7)

which is the marginal likelihood of the data segmented by the break date. We calculate this

quantity on a large grid of possible break dates and choose the break date with the largest

value of this marginal likelihood.

17The risk factor set is stable within each regime.
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The problem in calculating the preceding quantity is that we do not know the identity

of risk factors before and after the split. To deal with this two-way model uncertainty, we

consider all possible divisions of ft into xt and yt, on either side of t∗1. On the left, we denote

the models by Mj,1 and on the right by Mk,1, for (j, k) = 1, ..., J = 2K − 1. When j = k the

splits are identical but the parameters of the model are different. Just as we did in Equation

(3), the jth model in regime s, s = 1, 2 takes the form

xj,t,s = λj,s + uj,t,s

y
j,t,s

= Γj,sxj,t,s
+ ε

j,t,s

uj,t,s ∼ N(0,Ωj,s)

ε
j,t,s

∼ N(0,Σj,s), t ∈ Ts,1 , s = 1, 2, (8)

where T1,1 = (1, 2, ..., t∗1) and T2,1 = (t∗1 + 1, ..., T ). We denote the unknown parameters in

these models by θj,s = (λj.s,Ωj,s,Γj,s,Σj,s). Note that each of these models has a different

set of risk factors and a different set of parameters, and because we have a break, these

parameters differ between regimes.

Letting π (θj,s) denote the prior on θj,s, the marginal likelihood of Mj,s is given by

marglik(fs,m|Mj,s, t
∗
1)

=

∫
N(xj,t,s|λj,s,Ωj,s)N(y

j,t,s
|Γj,sxj,t,s

,Σj,s)dπ (θj,s) , j ≤ J, s = 1, 2 (9)

which we calculate by the method of Chib (1995a).

Now by extending the argument and marginalization the marginal likelihood in Equation
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(7) can be written as

marglik(f1,t∗1 , ft∗1+1,T |t∗1) =
J∑

k=1

J∑
j=1

marglik(f1,t∗1 , ft∗1+1,T |Mj,1,Mk,1, t
∗
1) Pr(Mj,1) Pr(Mk,1)

(10)

=
1

J2

J∑
k=1

J∑
j=1

marglik(f1,t∗1 |Mj,1, t
∗
1)marglik(ft∗1+1,T |Mk,2, t

∗
1) (11)

where in the second line we have assumed equal prior probabilities of models and the fact

that the joint factors into independent components given the models. In effect, what we

do is pair each of the J possible models in the first regime with each possible model in the

second and then marginalize over all possible such pairings.

We repeat the above calculation for every possible break date. The break date and

two collections of regime-specific risk factors best supported by the data are those with the

highest marginal likelihood.

2.4. Multiple breaks

With multiple breaks, we perform the same marginal likelihood calculation as in the single

break approach, but this time, given m breaks, we calculate the marginal likelihood of the

data segmented by the m breaks:

marglik(f1,m, ..., fm+1,m|t1, . . . , tm). (12)

We calculate this quantity for every possible combination of the m breaks and hence every

possible combination of the J models in each of the m+ 1 regimes.

Let the time points in the (m + 1) regimes of [1, T ] induced by these m break dates be
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denoted by the sets

Ts,m = {t : ts−1 < t ≤ ts} , s = 1, ...,m+ 1. (13)

Let the data on the factors in Ts,m be given by

fs,m = {ft : ts−1 < t ≤ ts} , s = 1, ...,m+ 1. (14)

Once again, we consider all possible splits of ft into xt and yt, in each of the m + 1

regimes. For regimes s = 1, . . . ,m+ 1, these splits produce models that we indicate by Mj,s

for j = 1, ..., J = 2K − 1. At time t, in regime s, the data generating process under Mj,s is

given by

xj,t,s = λj,s + uj,t,s

y
j,t,s

= Γj,sxj,t,s
+ ε

j,t,s

uj,t,s ∼ N(0,Ωj,s)

ε
j,t,s

∼ N(0,Σj,s), t ∈ Ts,m. (15)

Denoting the unknown parameters in these models by θj,s = (λj,s,Ωj,s,Γj,s,Σj,s), the marginal

likelihood of Mj,s is given by

marglik(fs,m|Mj,s, t
∗
1, . . . , t

∗
m)

=

∫
N(xj,t,s|λj,s,Ωj,s)N(y

j,t,s
|Γj,sxj,t,s

,Σj,s)dπ (θj,s) , j ≤ J, s = 1, . . . ,m+ 1 (16)

which we calculate by the method of Chib (1995a).

The next step is to calculate the marginal likelihood of all the data for given pairings of

models from each of the m+ 1 regimes. There are J (m+1) such pairings in all regimes. The

12



marginal likelihood in Equation (12) can be written as

marglik(f1,m, ..., fm+1,m|Mj1,1,Mj2,1, ...,MjJ ,1, ...,Mj1,m+1,Mj2,m+1...,MjJ ,m+1, t1, . . . , tm)

=
m+1∏
s=1

marglik(fs,m|Mjs,s, t1, . . . , tm). (17)

We can get the desired marginal likelihood by summing the right hand side over all possible

pairings of models. If m = 3 and J = 63, as in one of our cases we consider, there are more

than 15 million such model combinations. Thus,

marglik(f1,m, ..., fm+1,m|t1, . . . , tm) =
1

Jm+1

J∑
j1=1

· · ·
J∑

jm+1=1

m+1∏
s=1

marglik(fs,m|Mjs,s, t1, . . . , tm).

(18)

This is the marginal likelihood for the break dates t1, . . . , tm.
18 The calculation is repeated

for all possible locations of the m breaks and all possible combinations of the J models across

the corresponding m+ 1 regimes. For this assumed number of m breaks, the optimal break

dates t∗1, ..., t
∗
m and the m+1 collection of regime-specific risk factors are those that have the

highest marginal likelihood.

Finally, we repeat this calculation for different numbers of breaks m ∈ {0, 1, 2, ...,M}.

The optimal number of breaks m, their corresponding break dates (t∗1, . . . , t
∗
m), and the set of

risk factors selected in each of the m+ 1 regimes are those which have the highest marginal

likelihood across all the number of breaks up to the maximum number considered.19 Since our

Bayesian approach is based on the marginal likelihood which penalizes overparameterization,

it will inherently guard against overfitting the number of breaks.20

18Again, we have assumed equal prior probabilities of models and the fact that the joint factors into
independent components given the models. We pair each of the J possible models in the first regime with
each of the J possible models in each of the remaining m regimes and then marginalize over all possible such
pairings.

19In the analysis we fix the maximum number of possible breaks, M , to be equal to three at the outset.
This number depends on the sample size T . Due to the likely paucity of data within regimes, if M is too
large relative to T , it is not realistic (or necessary) to have too many breaks.

20The identity in Chib (1995b) notes that the log of the posterior ordinate is the penalty. Up to terms
bounded in probability, this ordinate in large samples will equal log(T) multiplied by the number of param-
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2.5. Prior distributions

Our prior construction follows Chib and Zeng (2020). For completeness, we provide an

abbreviated version here, but we refer the reader to their paper for full details. We now set

out the prior for the no break case. The same prior is constructed for the parameters in each

regime of the breakpoint model.

Formally, models are defined by the parameters

θj = (λj,ψj)

where

ψj =


Ω1 j = 1

(Ωj,Γj,Σj) j ≥ 2.

The prior construction relies on the facts that the number of free parameters in

ψ1 = Ω1,

is exactly equal to the number of free parameters in

ψj j ≥ 2

and that there is a one-to-one mapping between them. Then, based on a training sample,

a prior distribution is formulated for Ω1. From this single distribution, by the change of

variable, the distributions of ψj, j ≥ 2 are derived. In this way, the priors across models are

equalized.

Finally, the prior of λj is also found from a training sample. 21 This prior is conditioned

eters. Thus, more complex models will have a bigger penalty.
21For further details, see Chib and Zeng (2020).
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on the error covariance matrix and is specified in such a way that it places very little weight on

implausibly large Sharpe ratios, thus avoiding approximate arbitrage opportunities (Pástor

and Stambaugh 1999).

3. Factor selection

This section first describes our data before detailing our results on evidence of breaks and

regime-specific factor selection. Finally, we discuss implications for estimates of time-varying

risk premia and market prices of risk.

3.1. Data

Our analysis focuses on the six factors of Fama and French (2018).22 We use monthly data

from July 1963 through December 2023, available from Ken French’s website.

3.2. Rolling window

Bessembinder et al. (2021) also consider time variation in the factor zoo. They select a factor

if the intercept of an OLS regression of the factor on the MKT factor has a t-statistic greater

than 3.0. Then, they apply this using a fixed 60-month rolling window approach throughout

their sample to select factors over time.

Although there may be occasional shifts in the set of risk factors that explain the cross

section of expected returns due to, for example, changes in monetary policy, regulation, or

technological innovations, having factors enter and exit the set of true factors every month

is difficult to motivate from an economic standpoint. The rolling window causes factors to

enter and exit the selected set in a noisy manner, which is difficult to motivate economically.

22Details of these factors are provided in Table 1.
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To see how the rolling window approach causes factors to enter and exit the set in a noisy

fashion, each window of Figure 1 displays whether the corresponding factor labeled in the

subcaption is selected (the indicator variable equals one) or omitted at a given time point.

These selections are obtained from estimating recursively our methodology that excludes

breaks but uses a fixed rolling window length of five years. We see that factors are frequently

omitted and then selected again shortly after.

Figure 2 displays the corresponding total number of factors selected at each time point

from this rolling-window approach. We see that the number of factors selected in the model

varies between one and five and is changing very frequently. Such frequent changes in the

sparsity of the factor model are hard to motivate on economic grounds.

This evidence can be used as motivation for our methodology, which restricts the number

of shifts in the set of risk factors, assuming that the set is stable between structural breaks.

3.3. Evidence of breaks

The top panel of Table 2 displays the log marginal likelihoods for the optimal break dates

when assuming different numbers of breaks from zero to three. We see that three breaks

have the highest logarithmic marginal likelihood and, therefore, are clearly preferred to fewer

numbers of breaks. The optimal timing for these three breaks is March 1975, October 1995,

and September 2005. These break dates correspond closely to major events such as the oil

price shocks of the 1970s, the rise of the Internet revolution, and digitization of financial

markets that culminated in the dotcom bubble, and the final break occurs just before the

onset of the Global Financial Crisis. The post-2005 data correspond to the current regime

and thus these are the data that are relevant for finding risk factors that are currently pricing

the cross section.

The bottom panel of Table 2 displays the log marginal likelihood for three break dates

that are very close to the optimal three break dates. We see in each case that the log marginal
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likelihood is slightly lower, and therefore these break dates are dominated by the optimal

ones. Figure 4 illustrates the posterior probabilities associated with the top 30 break date

combinations, given the preferred three-break model. The results show a clear preference for

the optimal break dates, which capture nearly 20 percent of the total posterior probability.

The second most likely combination, which shifts the third break from September 2005 to

August 2005, secures just over ten percent of the posterior probability. The probabilities

decline sharply thereafter, with the fifth most likely break date combination capturing less

than five percent of the total posterior weight.

3.3.1. Instant or gradual changes?

Occasional changes in the set of risk factors could be driven by publication effects (McLean

and Pontiff 2016) or important regulatory or technological changes. These types of events

are likely to cause the set of risk factors to shift abruptly. Alternatively, risk and risk premia

change more gradually over time, either as a function of business conditions or as a result of

slow-moving changes in the economy. Given that the nature of the change is unobservable,

it is important to incorporate both potential changes, abrupt and gradual, when estimating

changes in the set of risk factors.

Although we focus on inference in this paper on the optimal break date, an important

feature of our Bayesian framework is that it captures uncertainty surrounding the break

dates. The top panel of Figure 3 displays the posterior probability – measured in percent –

that the first break identified by our model occurs in a given month. We see that while most

of the probability (about 50%) is assigned to the optimal break date of March 1975, there is

uncertainty around this, with the remainder of the probability being distributed throughout

the year. The lower panel displays the corresponding cumulative posterior probability, mea-

sured in percent, that our model has identified no breaks (dotted line) or one break (solid

line). As of December 1974, one is fully confident that we are still in the first regime, as zero
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posterior probability is assigned to one break. However, with each subsequent month the

probability assigned to one break increases until, by March 1975, this scenario receives more

weight than the no-break case. By August, one is almost certain that we have transitioned

to the second regime.

This is a particularly attractive feature of our approach, because our methodology is

flexible enough to allow for both instant shifts and gradual changes. The extreme case of no

uncertainty surrounding the break date estimate implies an abrupt shift. As this uncertainty

increases, the shift becomes more and more smooth. Popular approaches to capture such

changes can typically accommodate one of these scenarios, but not both. For instance,

a time-varying parameter model captures gradual changes, while a frequentist break-point

approach captures abrupt changes.

The uncertainty surrounding the break date estimate can be incorporated into risk premia

and price of risk estimates from the factor model, and thus our framework can allow for both

abrupt and gradual changes in risk premia and price of risk estimates.

3.4. Risk factor selection

The first four panels of Table 3 show log marginal likelihoods for the top five models ranked

by log marginal likelihood in the four regimes separated by the optimal three break dates.

A value equal to one (zero) indicates that a factor is selected (omitted). In the first regime

(1963-1975), the optimal model is the one which includes all six potential factors except the

size factor. This collection of risk factors has a log marginal likelihood of 526.451. Each of

the top five models in this regime omits the size factor, providing strong evidence that this

factor is not relevant in this regime. The only two factors that are selected in each of the

five top performing models are the market factor and the momentum factor. The upper left

window of Figure 5 displays, for this regime, the log marginal likelihoods for each of the 63

possible models ranked based on the log marginal likelihood from best (left) to worst (right).
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The best model, which selects all six factors except SMB, is shown in blue. Other models of

interest are colored red. We see that dense models that include more factors (FF6 and FF5)

tend to perform better than sparse models (FF3 and CAPM). Note that the FF6 model is

the sixth best model out of 63.

The upper left window of Figure 6 displays, for this regime, the number of factors in

each of the 63 possible models that are ranked based on log marginal likelihood from best

(left) to worst (right). The best model is colored blue. The remaining 62 models are colored

red. We see that the best performing models (to the left of the figure) tend to be dense

models (toward the top), while the worst performing models (to the right) tend to be sparse

models (toward the bottom). The circles plotted in the figure therefore move from the top-

left towards the bottom-right with the median number of factors selected in the top ten

performing models being equal to four. This finding suggests that dense factor models are

preferred to sparse models during this period.

In the second regime (1975-1995), the FF6 model is the best performing model with a log

marginal likelihood of 3586.089. Each of the five best-performing models includes at least

four factors, and usually at least five. The HML and RMW factors are the only ones selected

in each of the five best models. Once again, popular dense models tend to perform well (FF6

and FF5), while popular sparse models (FF3 and CAPM) tend to perform poorly. In fact,

the pattern in which dense models tend to outperform sparse models is even more striking

in this regime (top right window of Figure 6). The median number of factors in the top ten

performing models is equal to five, even higher than in the first regime.

The third regime (1995-2005) displays the same dynamics as the first two. A five-factor

model that omits HML is preferred with a log marginal likelihood equal to 1384.963. The

FF6 model is the second-best model, and each of the top five models contains at least five

factors. The MKT, SMB, and RMW factors are selected in each of the top five models. Once

again, popular dense models (FF6 and FF5) outperform popular sparse models (FF3 and

CAPM). The pattern in which dense models tend to outperform sparse models continues to
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persist in this regime, with the median number of factors selected in the top ten models once

again equal to five.

However, in the final regime (2005-2023), the pattern changes markedly. The best-

performing model now selects only two factors: market and profitability. The top five

models contain between two and at most four factors. Market and profitability are selected

in each of these five models, providing strong evidence that these factors are relevant, while

SMB is not selected in any of them. It is striking that in this regime the simple CAPM is

one of the best performing models, above denser models such as FF3, FF5 and FF6. Across

all the possible 63 models in this regime, we no longer see any evidence that dense models

outperform sparse models. If anything, the pattern reverses, with the median number of

factors in the top ten performing models equal to just 2.5. A model selection approach that

ignores breaks and uses all available historical data (1963-2023) identifies a four-factor model

(MKT, RMW, CMA, MOM) as the best performing model with a log marginal likelihood of

8022.842 (top row of the bottom panel in Table 3). Here we see that popular dense models

(FF6 and FF5) outperform popular sparse models (CAPM and FF3). Across all 63 possible

models, we see a clear pattern in which dense models tend to outperform sparse models,

as observed in the first three regimes using the model that allows for breaks. The median

number of factors selected in the top ten models is four.

These findings make a simple, yet novel point. Until 2005, dense models were preferred,

but since 2005 there has been a clear shift towards parsimony with sparse models performing

better. Ignoring breaks conceals this changing dynamic and would lead one to spuriously

believe that dense models are still preferable today. This is because using pre-break data

tends to detect factors that were once relevant but not at present. The implication of this

overlooked finding is that there has been a clear shift toward parsimony, and researchers

should avoid using pre-break data when selecting factors. Some recent studies that identify

a large number of risk factors may in part reflect this phenomenon: several factors in those

models may simply be fitting prebreak data that are no longer relevant. We recommend that
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researchers use our approach or use only the post-2005 data in their future analyses.

3.5. Factor risk premia and market prices of risk

Our approach also generates estimates of factor risk premia and their market prices of risk,

which are allowed to vary across regimes.

Each window of Figure 7 displays the estimated posterior mean of the risk premia (ex-

pressed in annualized percent) for the corresponding factor labeled in the caption. Parts of

the solid black line that are “missing” correspond to that factor not being selected in the

given regime. Similarly, the dashed black line is omitted for HML and SMB altogether since

they are not selected in the model that precludes breaks.

We see that the equity premium (top-left window) is estimated to be about 7 percent

when precluding breaks. Accounting for breaks, however, induces some time variation around

this value, with the equity premium generally rising throughout the sample and reaching its

highest value of around ten percent in the most recent regime (post-2005).

The only other factor consistently selected throughout the sample and in the current

regime is the profitability factor (middle-right window). The estimated premium on this

factor has shown significant time variation, rising from a low value to approximately 4% in

1975, where it has stabilized. In contrast, the no-break model smooths through these regime

changes, estimating a steady premium of around 3. 5% throughout the sample period.

We also present clear evidence of a decrease in value premium (middle left) throughout

the sample, aligning with findings documented in previous studies (Fama and French 2021).

Specifically, we observe that the value premium drops from nearly 6 percent prior to 1975

to just above 4 percent from 1975 to 2005. Since 2005, the value factor has been omitted

altogether.

Both the investment and momentum factor risk premia estimated from the breakpoint

model reveal larger premia compared to the time-invariant model. By pooling information
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across the final regime, the no-break model estimates a lower premia in earlier periods than

the breakpoint model.

The size factor is omitted in the first and final regimes and is estimated to have increased

across the middle two regimes from about 2 percent (1975-1995) to about 6 percent (1995-

2005). The time-invariant model entirely omits the size factor, precluding any comparison.

In summary, we find evidence of time variation in all six-factor risk premia.

The four top panels of Table 4 present estimates of the risk premia of the factors selected

by the optimal model in each of the four regimes. Specifically, we report the posterior mean,

standard deviation, and median of the risk premia estimates, along with the lower and upper

bounds corresponding to the 95th percentiles of the posterior distribution. The bottom panel

displays the same information for the model that precludes breaks. Figure 8 illustrates the

corresponding estimated posterior densities of the risk premia.

In the most recent regime, the market and profitability factors are the only two selected,

both generating significant risk premia. These factors were also significant in the second

regime (1975-1995).23

Regarding the market prices of the factor risks, which are the weights of the risk factors

in the SDF, Figure 9 shows clear evidence of time variation in the market price of risk for the

six factors that is obscured when breaks are excluded. Once again, Table 5 shows that the

market prices of risk of the market and the profitability factors are significant in the second

and third regimes, although the market price of risk of the market factor is also significant

in the second regime.

23Given the relatively short durations of the first and third regimes, achieving formal significance may be
challenging due to imprecision in the estimates resulting from inherent data noise.
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4. Pricing performance and investment implications

4.1. Pricing of the excluded factors

Having identified optimal regime-specific collections of risk factors, we next investigate

whether the selected factors in each regime can price the omitted ones. Using the entire

sample, the MOM factor is not priced by the Fama-French 5-factor model; the MOM, RMW

and CMA factors are not priced by the Fama-French 3-factor model; and the SMB factor is

not priced by the factors (Mkt, RMW, CMA and MOM) in the no-break model.

To evaluate pricing ability, we fit a series of regression models with each excluded factor

as the dependent variable and the selected risk factors as the independent variables. This

analysis is conducted separately for each regime, using only the data and factors selected

from that regime. For each excluded factor, two Bayesian regressions are estimated: one

with an intercept and one without. The marginal likelihood of each model is then calculated

using the method of Chib (1995a).

If the log marginal likelihood of the model without an intercept exceeds that of the model

with an intercept by more than 0.69, then we can conclude that the omitted factor is priced

by the selected factors in that regime. Formally, exceeding this threshold indicates that the

posterior odds of the model without an intercept relative to the model with an intercept are

at least 2:1.24 The results of applying this test to each of the excluded factors are shown in

Table 6.

The results for the new risk factors are remarkable. In every regime and for each omitted

factor, the differences in log-marginal likelihoods are more than 0.69, implying that the

24Frequentist tests are based on sampling distributions of estimators, which require the involvement of
unseen samples beyond the one that is observed. The Bayesian test is only conditioned on the observed data.
In addition, the Bayesian test is based on the estimation of both models, not just one model as in a frequentist
test of alpha. Finally, the marginal likelihood is a measure of out-of-sample predictive performance of each
model, unlike a t-test which measures the extent of departure of an estimator from the null of zero in unseen
samples. Due to these differences, frequentist tests can yield different conclusions.
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model without an intercept is preferred and the selected set of factors in each regime price

all of the omitted factors. This gives confidence that our method selects the appropriate set

of risk factors in each regime.

4.2. Pricing the cross-section and investment implications

We now provide some evidence on the performance of the current set of risk factors (MKT,

RMW) in pricing the cross section of stocks in the final regime we identify. Our sample,

drawn from the CRSP database25, consists of 1,992 stocks that have at least 180 months

of available data during our sample.26 We isolate the stocks that are not priced by these

two risk factors since those are the ones that offer an investment opportunity. We evaluate

whether it is possible to form a minimum mean-variance portfolio by combining the selected

risk factors with the stocks that they do not price.

For each stock, we apply the Bayesian pricing test described in the previous section.

Specifically, for the excess return of each stock i, a pair of Bayesian regression models are

estimated, one with an intercept and one without. The marginal likelihood of each model

in the pair is computed using the method of Chib (1995a) and the best model in the pair is

then selected (the ones with the largest marginal likelihoods). If the log marginal likelihood

of the model with an intercept does not exceed that of the model without an intercept by

more than 0.69, we conclude that stock i can be priced by the set of risk factors. Otherwise,

it cannot be priced and offers an investment opportunity.

All stocks deemed unpriced by this criterion, in conjunction with the corresponding risk

factors, are used to form a tangency portfolio, which is also the portfolio with the highest

25Source: Center for Research in Security Prices, CRSP 1925 US Stock Database.
26Following convention, we drop financial firms, those with share codes beyond 10 and 11, and those with

prices below $5.
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Sharpe-ratio (Sharpe 1994). This highest Sharpe-ratio is given by

Sharpe ratio =

√
µ̂′Ω̂−1µ̂, (19)

where µ̂ and Ω̂ are estimates of the mean and covariance of the given risk-factors and its set

of unpriced stocks.

This process is then repeated for a range of popular risk factor collections such as the

Fama-French 3- and 5-factor models. The number of such assets, of course, varies by risk

factor collection (because the number of risk-factors varies as does the number of stocks

priced by different risk-factor collections).

The results of these Sharpe ratios are given in Table 7 for the new collection of risk

factors and the existing collections. The Sharpe ratio for the new risk factors is the highest.

We leave further study of this interesting finding to future work because it is not directly

related to the main goals of this paper.

Finally, we consider time-variation in the weights of the maximum Sharpe ratio portfolio

that is constructed from the selected set of risk factors. These weights are shown in Figure

10. The solid black line shows the time-varying estimated weights and the dashed black line

gives time-invariant weights. These weights are expressed as percent, and the corresponding

factor is labeled in the subcaption. These weights are also reported in Table 8.

We see that the optimal weighting of the market factor has increased over time from

about ten percent in the first half of the sample to around 30 percent in the second half.

The model that precludes breaks, however, smooths through all the regimes and allocates

a constant 20 percent or so to the market. The model that excludes breaks assigns zero

weight to size and value at all times, whereas our approach is more flexible and allocates up

to 20 percent to these factors in certain regimes and zero percent in others. The profitability

factor receives a substantial weight of close to 30% from the no-breaks model, while our

approach reveals that the weight in this factor is as much as 70 percent since 2005. Finally,
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our approach reduces the weight in the investment and momentum factors to zero since 2005,

while the no-break model assigns a constant 40 and 14 percent to these two factors. These

findings have important implications for investment strategies.

5. Conclusion

An extensive literature has proposed a multitude of factors that claim to price the cross

section of expected returns. This proliferation of factors has led to a more recent literature

that attempts to impose discipline on these factors in various ways and hence tame the ‘factor

zoo’. This paper operationalizes a simple yet novel point, overlooked in the literature, that

it is important to account for occasional infrequent shifts or breaks in the set of risk factors.

This is because using all available historical data tends to detect factors that were once

relevant but are no longer, thereby overstating the relevant set of factors.

Since the date on which the risk factor set changes is unknown, it must be estimated.

Existing breakpoint methods are not suitable for this setting, since they only allow the

parameters of the model to change, but assume the model itself remains the same over time.

Similarly, existing model selection methods do not account for changes in the model over

time. We develop the first formal estimation procedure for this setting (either Bayesian or

frequentist) that performs an exhaustive search to identify the optimal risk factor collection

that is allowed to change at multiple unknown times.

Empirically, we find evidence of three breaks in a six-factor model (Fama-French 5-factors

plus momentum) since 1963 that occur in 1975, 1995, and 2005. Our break dates correspond

approximately to the oil price shocks of the 1970s, the surge of the Internet revolution, and

digitization of financial markets, and just before the Global Financial Crisis, suggesting that

the optimal set of risk factors can undergo major changes in the presence of such events. We

document clear evidence of a shift towards sparse/parsimonious factor models in the post-

2005 period. Until 2005, the preferred model contained either five or six factors. Since 2005,
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only two factors (MKT and RMW) have been preferred. Moreover, the median number of

factors in the top ten models is four or five in each regime until 2005, but is just 2.5 since

2005.

The approach that precludes breaks and that performs factor selection using all the

available data spuriously detects an additional two factors (MOM and CMA) that were only

relevant until 2005. Our findings have clear implications for the ‘factor zoo’ literature: those

who do not use only the most recent data when conducting factor selection will spuriously

detect additional factors that are no longer relevant. This offers one partial explanation for

the ‘factor zoo’: too many factors are being selected because they are fitting pre-break data.

In addition, sparse/parsimonious models appear to be favorable for investors who wish to

build investment strategies based on such factors today.

Our framework should open new avenues for future research on the challenging problem

of detecting risk factors.
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Table 1: Definitions of factors used in the study. This Table defines how the factors used in our study
are constructed.

Factors Definitions

MKT the excess return of the market portfolio
SMB the return spread between diversified portfolios of small size and big size stocks
HML the return spread between diversified portfolios of high and low B/M stocks
RMW the return spread between diversified portfolios of stocks with robust and weak profitability
CMA the return spread between diversified portfolios of stocks of low (conservative) and high

(aggressive) investment firms
MOM the return spread between diversified portfolios of stocks with high and low returns over the

previous 12 months

Table 2: Number of breaks: Log marginal likelihoods under different numbers of breaks and their locations
estimated using our methodology on the six factor model of Fama and French (2018) using data from July
1963 through December 2023. The row displayed in bold font corresponds to the optimal number and timing
of breaks.

No. of breaks Log marg lhood. Break dates

0 8022.842
1 8221.959 May 1998
2 8258.581 Jan 1981 Jul 1998
3 8333.784 Mar 1975 Oct 1995 Sep 2005

3 8331.619 Jan 1975 Oct 1995 Sep 2005
3 8331.411 Feb 1975 Oct 1995 Sep 2005
3 8332.419 Apr 1975 Oct 1995 Sep 2005
3 8332.126 May 1975 Oct 1995 Sep 2005

3 8330.252 Mar 1975 Aug 1995 Sep 2005
3 8332.951 Mar 1975 Sep 1995 Sep 2005

3 8331.371 Mar 1975 Oct 1995 Oct 2005
3 8329.825 Mar 1975 Oct 1995 Nov 2005
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Table 3: Regime-specific factor selection: The first four panels of this Table display log marginal
likelihoods for the top five models ranked by log marginal likelihood in the four regimes separated by the
optimal three break dates. A value equal to one (zero) indicates a factor is selected (omitted). The final
panel displays the same information from the model that precludes breaks.

Mkt SMB HML RMW CMA MOM Log marg. lhd.

Jul 1963 - Mar 1975 1 0 1 1 1 1 526.451
1 0 0 1 1 1 525.692
1 0 1 0 1 1 524.963
1 0 1 1 0 1 524.643
1 0 0 0 1 1 524.594

Apr 1975 - Oct 1995 1 1 1 1 1 1 3586.089
1 1 1 1 0 1 3584.353
1 0 1 1 1 1 3583.721
0 1 1 1 1 0 3583.701
1 1 1 1 0 1 3582.573

Nov 1995 - Sep 2005 1 1 0 1 1 1 1384.963
1 1 1 1 1 1 1384.826
1 1 1 1 0 1 1384.094
1 1 0 1 1 0 1383.382
1 1 1 1 1 1 1383.210

Oct 2005- Dec 2023 1 0 0 1 0 0 2848.358
1 0 0 1 1 0 2848.299
1 0 0 1 0 1 2847.591
1 0 1 1 1 0 2847.589
1 0 0 1 1 1 2847.501

Jul 1963 - Dec 2023 1 0 0 1 1 1 8022.842
1 0 1 1 1 1 8021.338
1 0 1 1 0 1 8018.978
1 1 0 1 1 1 8018.851
1 0 0 0 1 1 8018.635
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Table 4: Risk premia estimates. The top four panels of this table display, for each of the four regimes,
a range of risk premia estimates for the factors selected by the optimal model in that regime. Specifically,
we report the posterior mean and standard deviation of the risk premia estimates. We also report the lower
and upper estimates that correspond to the 95 percentiles of the posterior distribution. The bottom panel
displays the same information for the model that precludes breaks.

Mkt SMB HML RMW CMA MOM

Jul 1963 - Mar 1975
postmean -0.0008 0.0047 0.0003 0.0035 0.0083
postsd 0.0044 0.0025 0.0017 0.0022 0.0037
lower -0.0094 -0.0001 -0.0031 -0.0008 0.0009
upper 0.0077 0.0097 0.0036 0.0076 0.0156

Apr 1975 - Oct 1995
postmean 0.0067 0.0014 0.0035 0.0035 0.0029 0.0091
postsd 0.0031 0.0017 0.0018 0.0009 0.0012 0.0023
lower 0.0007 -0.0002 -0.0002 0.0002 0.0006 0.0005
upper 0.0127 0.0048 0.0069 0.0055 0.0053 0.0136

Nov 1995 - Sep 2005
postmean 0.0047 0.0049 0.0036 0.0052 0.0092
postsd 0.0049 0.0042 0.0044 0.0029 0.0063
lower -0.0051 -0.0034 -0.0048 -0.0007 -0.0032
upper 0.0143 0.0132 0.0124 0.0109 0.0216

Oct 2005 - Dec 2023
postmean 0.0089 0.0033
postsd 0.0035 0.0015
lower 0.0020 0.0004
upper 0.0158 0.0062

Jul 1963 - Dec 2023
postmean 0.0059 0.0029 0.0029 0.0058
postsd 0.0019 0.0009 0.0008 0.0018
lower 0.0022 0.0014 0.0014 0.0023
upper 0.0095 0.0046 0.0046 0.0093
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Table 5: Price of risk estimates. The top four panels of this table display, for each of the four regimes,
a range of market price of risk estimates for the factors selected by the optimal model in that regime.
Specifically, we report the posterior mean and standard deviation of the risk premia estimates. We also
report the lower and upper estimates that correspond to the 95 percentiles of the posterior distribution. The
bottom panel displays the same information for the model that precludes breaks.

Mkt SMB HML RMW CMA MOM

Jul 1963 - Mar 1975
postmean 5.194 8.794 16.154 12.114 6.857
postsd 2.664 5.419 7.720 7.397 2.632
lower -1.478 -5.027 -2.949 -6.579 0.293
upper 12.289 23.404 37.558 32.272 14.046

Apr 1975 - Oct 1995
postmean 7.427 6.848 13.8115 35.669 19.504 6.190
postsd 2.229 3.519 5.478 7.274 8.178 2.638
lower 1.845 -1.969 -0.223 17.794 -0.722 -0.474
upper 13.308 16.315 28.214 55.325 41.588 13.145

Nov 1995 - Sep 2005
postmean 10.076 6.044 8.758 10.508 3.152
postsd 3.271 3.341 3.819 4.605 1.855
lower 2.232 -2.300 -0.649 -0.963 -1.595
upper 19.004 15.065 19.054 22.859 8.052

Oct 2005 - Dec 2023
postmean 4.475 9.855
postsd 1.591 3.859
lower 0.529 0.289
upper 8.690 20.215

Jul 1963 - Dec 2023
postmean 5.935 6.769 11.109 3.815
postsd 1.036 1.873 2.228 0.984
lower 3.307 1.957 5.458 1.311
upper 8.701 11.603 16.947 6.332
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Table 6: Pricing of the omitted factors by the selected factors in each regime: log-marginal
likelihoods of regression models with and without an intercept. In each regime, the right-hand
side variables are the selected risk-factors; the left-hand side variable is the omitted factor displayed in the
corresponding column. The regressions displayed in the first row contain an intercept, while those in the
second do not. We report the difference between the regression without an intercept and the regression with
an intercept.

SMB HML CMA MOM

Jul 1963 - Mar 1975
with α 256.1637
without α 257.3031
difference 1.139

Apr 1975 - Oct 1995
with α
without α
difference

Nov 1995 - Sep 2005
with α 257.853
without α 260.123
difference 2.269

Oct 2005- Dec 2023
with α 461.053 385.639 490.994 334.839
without α 462.639 386.851 492.429 336.083
difference 1.586 1.211 1.436 1.243

Table 7: Sharpe ratio of tangency portfolio. Sharpe-ratios of the tangency portfolio for assets composed
of the selected risk-factors in the final regime and the stocks (out of 1,992) that are not priced by those risk-
factors in the corresponding regime. The results show the portfolio consisting of the selected risk-factors,
plus its unpriced stocks, has the highest Sharpe-ratio across the different sets of risk-factors.

Risk factors Sharpe ratio

6-factor model 1.69
5-factor model 1.37
4-factor model 0.87
3-factor model 1.82
CAPM 1.73
MKT+RMW 2.74
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Table 8: Factor weights in maximum Sharpe ratio portfolio. The top four rows of this table display
the weight (expressed in percent) allocated to each of the selected factors in the optimal model chosen in
each of the four regimes. The bottom row displays the same information for the model that precludes breaks.

Mkt SMB HML RMW CMA MOM

Jul 1963 - Mar 1975 10.58 17.91 32.89 24.67 13.96

Apr 1975 - Oct 1995 8.30 7.66 15.44 39.88 21.80 6.92

Nov 1995 - Sep 2005 26.15 15.68 22.73 27.27 8.18

Oct 2005- Dec 2023 31.23 68.77

Jul 1963 - Dec 2023 21.48 24.50 40.21 13.81
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Figure 1: Each subfigure displays whether the factor is selected (indicator variable equals one) or omitted
(indicator variable equals zero) at a given point in time, estimated recursively from our methodology that
precludes breaks using a five-year fixed rolling window length.
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Figure 2: This Figure displays the total number of factors selected at a given point in time, estimated
recursively using our methodology that precludes breaks and a five-year fixed rolling window length.
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Figure 4: This figure displays the posterior probability assigned to each of the top 30 break date combinations,
conditional on the preferred three break model.
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Figure 5: The top four windows of this Figure display, for each of the four regimes, the log marginal
likelihoods for each of the 63 possible models which are ranked based on log marginal likelihood from best
(left) to worst (right). The best model (top-left circle in each panel) and other models of interest are colored
blue. The lower left panel displays the same information for the model that precludes breaks.
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each of the 63 possible models which are ranked based on log marginal likelihood from best (left) to worst
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same information for the model that precludes breaks.
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Figure 7: Each window of this Figure displays the time-varying (solid red line) and time-invariant (dashed
blue line) risk premia estimates (expressed in annualized percent) for the corresponding factor labelled in the
subcaption. The time-varying estimates are from the selected model in each regime and the time-invariant
estimates are from the same model that precludes breaks. Parts of the solid red line that are ‘missing’
correspond to that factor not being selected in the given regime. Similarly, the dashed blue line is omitted
for HML and SMB altogether since they are not selected in the model that precludes breaks.
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Figure 8: The top four windows of this Figure display, for each of the four regimes, the estimated posterior
density risk premia plots for each of the selected risk factors in the optimal model. The lower left panel
displays the same information for the model that precludes breaks.
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Figure 9: Each window of this Figure displays the time-varying (solid red line) and time-invariant (dashed
blue line) price of risk estimates (expressed in annualized percent) for the corresponding factor labelled in the
subheading. The time-varying estimates are from the selected model in each regime and the time-invariant
estimates are from the same model that precludes breaks. Parts of the solid red line that are ‘missing’
correspond to that factor not being selected in the given regime. Similarly, the dashed blue line is omitted
for HML and SMB altogether since they are not selected in the model that precludes breaks.
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Figure 10: Each window of this Figure displays the time-varying (solid red line) and time-invariant (dashed
blue line) estimated weights (expressed in percent) for the corresponding factor labelled in the subtitle in the
maximum Sharpe ratio portfolio constructed from the selected factors. The time-varying estimates are from
the selected model in each regime and the time-invariant estimates are from the same model that precludes
breaks.
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