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Abstract

A standard assumption in the Bayesian estimation of linear regression models is that the
regressors are exogenous in the sense that they are uncorrelated with the model error term.
In practice, however, this assumption can be invalid. In this paper, under the rubric of the
exponentially tilted empirical likelihood, we develop a Bayes factor test for endogeneity that
compares a base model that is correctly specified under exogeneity but misspecified under en-
dogeneity against an extended model that is correctly specified in either case. We provide a
comprehensive study of the log-marginal exponentially tilted empirical likelihood. We demon-
strate that our testing procedure is consistent from a frequentist point of view: as the sample
becomes large, it almost surely selects the base model if and only if the regressors are exoge-
nous, and the extended model if and only if the regressors are endogenous. The methods are
illustrated with simulated data, and problems concerning the causal effect of automobile prices
on automobile demand, and the causal effect of potentially endogenous airplane ticket prices
on passenger volume.
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1 Introduction

Consider the semiparametric linear regression mgde! z'3 + z{y + ¢, wherey € R is the
responsegy € R% is the treatment vector of interest, € R%: is a vector of controls and is

the idiosyncratic noise. A standard assumption in the Bayesian estimation of such models is that
the regressors are exogenous in the sense that they are uncorrelated with the error.témrm

many practical applications, however, this assumption is not satisfactory and is likely to be at odds
with the data. Provided one has a vector of valid instruments R?:, at least of the same
dimension ag, it is possible to develop a prior-posterior analysis of the parameters based on those
instruments, from both the parametric and semiparametric Bayesian viewpoints, see for example,
(2003, Hoogerheide, Kleibergen and van D{RO07), Schennacli?00%), Lao and Jiang?0717),

Elorens and Simon(2012 201§ 2027), Kafo (2013, Shin (2014, and, of particular relevance to

the current papeft; hib,_Shin‘and SimonZ018.

A missing element in the existing Bayesian literature is a test for the exogeneity/endogeneity
of the regressors. To fill this gap, in this paper, we derive the first Bayesian test for the endogeneity
of regressors. This test is based on the marginal likelihoods of two models: a base model that
is defined by the moment conditiod&z(0)z] = 0, E[¢()z1] = 0 andE[e(0)z,] = 0, where
e(0) := (y—2'B+21y) andb := (3, ~), and an extended model in which the exogeneity condition
of the base model is amendedE¢g: (0)x] = v. In the extended model,is an additional parameter
that accounts for the covariance between the errorrarhalysis of each model is based on the
exponentially tilted empirical likelihood (ETEL), avoiding parametric distributional assumptions.

We use the Bayes factor of the extended model versus the base model to test whsther
endogenous. The Bayes factor is the ratio of the marginal likelihoods of the extended and base
models. We show that, with probability approaching one as the sample size increases, the Bayes
factor selects the base model if and only it exogenous, and the extended model if and onty if
is endogenous. These results are proven through a detailed large-sample analysis of the marginal

likelihoods of the two models. Starting from the expression of the log-marginal likelihood given by
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theChib (1995 identity - as the sum of the log ETEL, the log prior, and the negative log posterior

of the parameters, each evaluated at a particular point in the parameter space - we show that the
log-marginal likelihoods of each model are asymptotically proportional to the Kullback-Leibler
divergence between the true data distribution and the closest distribution satisfying the moment
restrictions, plus a BIC penalty term. We provide a new derivation of this penalty by expressing
the posterior ordinate of the parameters at the true or pseudo-true value, by a change of variable,
as the posterior ordinate of a local parameter. The log of the Jacobian of this transformation is
the penalty, while the ordinate of the posterior density of the local parameter at zero is bounded in
probability asn — oo.

Model consistency of the Bayes factor arises because the first and third terms that characterize
the log-marginal likelihood behave differently depending on whethisrendogenous or exoge-
nous. When is exogenous, the average log-ETEL of the two models is asymptotically the same,
but the penalties differ. Whenis endogenous, model consistency of the test is driven by the differ-
ing behaviors of the respective log-ETEL values, which dominate any difference in the penalties.
Thus, the difference in penalties asymptotically plays no role in this case.

Interestingly, the idea of comparing two models to detect endogeneity, one which is misspec-
ified under endogeneity and the other which is not, is similar in spirit to the frequBiaEistmain
(1978 test where the comparison is based on estimators (rather than models) that are inconsistent
and consistent under endogeneity. In this sense, the Bayes factor test we provide is a Bayesian
analogue of the Hausman test.

The rest of the paper is organized as follows. In Sedfisre summarize in general terms the
Bayesian estimation and comparison of moment condition models using the exponentially tilted
empirical likelihood. In SectioB we present the base and extended models as well as finite-sample
results from a simulated data example to illustrate the implementation of our procedure. Bection
describes our test for endogeneity/exogeneity. Then, it analyses the large-sample behavior of the
log-marginal likelihood and establishes consistency of the testing procedure. A simulation exercise

is provided. Finally, in Section 5 we consider three examples using real data. Concluding remarks



are given in Section 6. An appendix collects the proofs of the main results. Additional results and

their proofs are in the Supplementary Appendix.

2 Preliminaries

In this section we briefly provide the background on Bayesian estimation of moment condition
models using the exponentially tilted empirical likelihood (ETEL). Further details can be found in
Schennacl00% andChib ef al.(?0T8.

Consider a random vectar € R*!, a vector of parametetsc © C R? with p = d, + d.,,
and letM denote the set of all probability distributions &{. For a known functiony(w, 6) :
R x RP — R4, let

E?[g(w,6)] = 0

denote a vector of moment conditions whéfés an element of the subset of distributions
Q= {Q e M : E?g(w,0)] = 0} (2.1)

that satisfy the moment conditions for a giver ©.

Suppose now that the data ., := (w,ws,...,w,) are independently drawn from the true
distribution P (that does not necessarily belongd@p for somef € ©). To find the empirical
counterpart of) € Qp, # € O, consider the discrete distributidjg; (0)}!_,, with support on
{w;,7 =1,...,n}, that is the nearest in the Kullback-Leibler (KL) discrepancy to the empirical
distribution that places probability ma$§} on each observation. Enforcing the requirement that
the moment restrictions are satisfied under this discrete distribution, the probability masses emerge

as the solution to the optimization program

,,,,,

subjectto _¢; =1, and > qig(w;,0) =0, VO €O, (2.2)
i=1

=1
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The ETEL is the likelihood constructed from this discrete distribution. It is defined as

w1n|9 = H

and is the the joint density of the observations after integrating)owith respect to a particular
nonparametric prior that imposes the moment restrictions for a given® as demonstrated in
Schennact{?005. Let 7 (0) denote the prior density of the parameters. Then, the ETEL-based

posterior distribution is given by the truncated distribution
7" (0|wy.n) o< w(0) Gwe.,|0) I[0 € HI, (2.3)

where I[A] denotes the indicator function, ard is the set off for which the convex hull of
U™, g(w;, 8) contains zero. IfH is empty, there is no solution if to (Z2). The posterior
7" (0|wy.,) is not available in closed form, but it can be summarized by tailored MCMC meth-
ods.

A convenient way to computgg; (0)} is from the dual of @2). If we let

X(9) = X(U)I:WJ 9) = arg i\n%Rn - Z eXp )\ g(wlv 8)) )
S

then ~
A0) g(w;.0)
a.(0) = = ,  i<n (2.4)
S eXOYa(w;.0)

The population counterpart f;(0)} is the distribution)*(0) € Q, that is closest td in the

KL divergence. It is defined as

Q*(0) := arginf .o, KL(Q||P),

whereKL(Q||P) := [log ( ) d(Q) is the KL discrepancy of) from P if () is absolutely con-

tinuous with respect td® and is equal to+oo, otherwise. The population counterpart)c(ﬂ)



)\* 0) .= in E N g(w;,0) .
(0) := arg min Efe ]

If one or more moment conditions are misspecified, tQe(y) # P for anyé € © and the
pseudo-true valué, is defined as the value éfthat minimizes KI(P||Q*(#)) over©. Notice the
inversion of the probabilities in thEL discrepancies used to defifg () andd,. Under correct
specification*(0,) = P, for somed, € O, andd, = 0..

When the dual representation of the optimization problB®) (holds, the pseudo-true value

can also be obtained as
@WMW)>

E[X-09(W0)] (2.5)

0, = arg max E log<

where in this case the term within the bracketgli@*(0) /dP](w).

3 Models

In this section, we link the general setting presented in Se&itmthe semiparametric linear
regression presented in Section 1. ket= (y, z, 21, 22) € R"! follow the unknown probability
distribution P, whered := d, + d., + d,,. Let E[-] := E”[-] denote the expectation with respect

to P. Now suppose that undét andd, := (f3,,~,), w follows the regression model
Yy = Bi)'r + fygzl + €, E[gi(eo)zj,i] =0 forj = 17 27 (31)

that is,z;;, j = 1,2 are exogenous vectors, is a vector of controls ang, is a vector of instru-
mental variables. Suppose that the intercept is contained ifhe focus is on the causal effect of

x ony, captured by the parametgr. Let

) :=y—pfr—n

=y—0w,



wherew, ; := (z,21;),0 = (8,7) € © C R? (p := d, +d.,). Under the assumption thétf, > d,,
the instruments help to identify, whenE[e;(6,)z;] # 0.

Base model The base model is defined by the moment conditions
EQ[gb(wve)] =0

where

x
g(w,0) :=¢(0) | 2
)

and( is an element of the subset of distributions:
Qo = {Q € M; E?[gy(w, 0)] = 0} (3.2)

that satisfy the moment conditions for a givere ©. The expectation is with respect to a distri-
bution@ € 9,4 (as opposed t&) because, it is endogenous undét, there is nd that satisfies
the moment conditions undét. Thatis,P ¢ Q. In this case, the ETEL function, constructed

from the samplev; ., solves the empirical counterpart of the moment conditions:
E% @ [g,(w,0)] =0

where, for every, Q; () is the distribution in the sa@, (9) closest taP in the KL divergence, that
is,
Q;(0) = argianEQb’eKL(QHP).

In addition,
e>\i(9)gb(w79) >

E[eX0)a(W6)] (3.3)

0, = arg Igleaé{Elog(

denotes the pseudo-true value in the base model. On the other hands &xogenous, then



Q;(0,) = P andd, = 6,, whered, denotes the true value 6f

Extended model We define the extended model by the moment conditions

E9g(w, )] =0, Q€ Qey, (3.4)
where
X v v
ge(’LU, ¢) = 5(9) 21| — 0f = gb(wa 0) =101,
Z9 0 0

Y= (6,0) € U, ¥ := 0 x Vwith V € R, andQ, , := {Q € M; E?[g, (w,¢)] = 0}. In this
model,v := E[e()z] is the covariance between the error and

Note that the extended model is correctly specified under both endogeneity and exogeneity
of z. For instance, ifE[c(f)z] # 0 for everyd € ©, while E[¢(0,)(z1,25)'] = 0, thenv will
be equal toE[=(6,)z]|, and B2) is satisfied for thig),. In the following, we use the notation
v, = E[e(,)z]. Therefore, the minimize);(y) = arginf o, , KL(Q||P), is equal taP, and the

population moment conditions in the extended model are

Ep[ge(w7 %)] = 0.

Moreover,

6)‘; (T/))ge(w/l/})
, (3.5)

Y, = arg fgg@f Elog <E[e’\; (¥)ge(Wh)]

where\,(¥) := arg minycga E[eN9(@¥)],



3.1 Numerical illustration

To illustrate the fitting of the base and extended models, consider first the base model under endo-

geneity. Let the DGP be

Yi =Y + T B+ 217 +&i
T; = 00 + 215 01 + 22, 02 +
R1i = Uy

R = Wi

fori = 1,...,n, wheren € {250,500, 1000,2000}. Suppose that thé.;, v;,w;) are marginally
Gaussian, that; is marginally a skewed Gaussian mixt@eA\/ (0.5, 0.5?) + 0.5 (—0.5, 1.118%),
that(e;, u;, v;) have a joint distribution induced by a Gaussian copula with covariance ni&iteix
(o(.l)ﬁ 0(1)6 ?) and that the covariance af; with each of the other errors is zero. Also assume that
each parameter is one (except é@r which is .5). Under this DGR,; is uncorrelated witlz; and
correlated withe; but sincew, is uncorrelated with the other shocks, is a valid instrument that is
also relevant for;. For each of the four sample sizes, the posteriar ef (3, ~,,,) is calculated

from the four moments conditions

1 0
E{(@/z’—%ﬁ—%_zu’h) } =

214 0

29 0

The ETEL posterior is sampled by the tailored one-block M-H algoritbinif_and Greenbéerg

1995 for 20000 iterations beyond a burn-in of a 1000 cycles. The marginal posterior density of
5 for each sample size is computed from these MCMC sampled draws. Kernel smoothed versions
of the posterior densities are given in FigllreAs the sample size increases, the posterior con-

centrates on a value quite different from the true valug.olin the extended (correctly specified)
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Figure 1: Base model under neglected endogeneity: Marginal posterior densitiésr afifferent
sample sizes. Posterior mean is indicated by dashed vertical line.

model we have
Z;
1

E[(yz -z, 3 — Yo — ~1i 71)
213

292i

The parameter of interest is naw= (3, v,,7v;, v). We use a default student-t prior ercentered

at the GMM estimate and spread given by 4 times the GMM asymptotic variance. The pfior of

is the same as in the base model. The ETEL posterior for each of the four different sample sizes
is sampled by the tailored one block M-H method for 20000 iteratations beyond a burn-in of 2000
cycles. The marginal posterior densities/bare given in Figur& and those o) are in Figure

B. One can see that the posteriorgfeven forn = 250, is close to the true value gf, and,

for n = 2000, is essentially centered around the true value. In addition, the posterigrtio¢

1.4

cov(z, €), tends to concentrate around the true value of 0.6.
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Figure 2: Extended modek{ moment is inactive): Marginal posterior densitiessdior different

sample sizes. Posterior mean is indicated by dashed vertical line.

4 Testing procedure

4.1 Bayes factor

Our Bayesian test of endogeneity is given by the Bayes factarpfrersusM,

771(1U1:n’4A/16)

BF., = ,
’ 771(101:n|jx4b)

wherem(wy,,|My) = [ §wialf, My)m(8)d8 andm(wy| M) = [ Glwinli, M.)m(¥)dy are
the model marginal likelihoods arising from the ETEL functions (also called marginal ETEL func-
tions later on). We compute these by the metho@hih (T99%, as extended to general M-H
chains inChib-and"Jeliazkoy?001). We selectM,. over M, if log(BF,.,) > 0, and seleciM,
otherwise.

According to the theory irChib et al. (2018, for valid comparisons of moment condition

models, the contending models must arise from a common encompassing model and should have
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Figure 3: Extended model under neglected endogeneity: Marginal posterior densities of
cov(z, ¢) for different sample sizes. Posterior mean is indicated by dashed vertical line.

the same number of moment conditions. We have ensured that this condition is met by including
the E[e;(0)z2,] = 0 restriction in the base model, and not excluding®je;(0)x;] = v condition
from the extended model.

Intuitively, the Bayes factor picks the correct model becalMggis correctly specified when
is exogenous and misspecified whers endogenous; howevek, is correctly specified in both
the cases. Therefore, fro@hih ef al. (2018, it follows that M,,, which hagd — p) overidentifying
restrictions, versud/., which has(d — p — d,) overidentifying restrictions, would be preferred
by the Bayes factor whem is exogenous (because it has more overidentifying restrictions than
M.), whereas M, would be preferred when is endogenous (becaudd, in that case would be

misspecified).
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4.2 Understanding the marginal likelihood

In this section we explain the rational behind our testing procedure. The hypothesis that we want

to test is the following one:

H,.: Pissuchthafld € R? such thate”[e;(0)x;] =0

against

H, : PissuchthaBf ¢ R? such thate”[¢;(0)z;] = 0.

Here, the subscriptaiss andcs are for misspecification and correct specification, respectively. We
notice that the previous hypothesis can equivalently be writteii/gs, : v # 0 andH., : v = 0.

Our approach based on BHRs equivalent to a Bayes test féf] ;.. versusH_, based on a prior

onv of the typemydo(v) + (1 — mo)m(v), wheredy(-) denotes a Dirac mass on zero ar(d) is a
continuous distribution. The two Bayes factors for these two approaches are numerically the same.
The testing procedure works as follows: if B> 1 then accept{,,;,,, if BF., < 1 then accept
H,,.

The next theorem shows thét,,;.; and H., can be expressed in terms of Kullback-Leibler
divergences betweef and the seQ, 4 of distributions that satisfy the moment restriction that we

want to test as well as additional moment restrictions that are known to haolel for

Theorem 4.1 Suppose that there is @ € © such thatE"[¢;(0)(z] ;25,)'] = 0. Consider the

following statements:

(). Pissuchthatl € © such thatE”[s;(0)z;] = 0

(i). KL(P||Q3(6+)) >0
(iii). PissuchthaBid € © such thatE’[¢;(0)z;] =0

(iv). KL(P[|@5(0.)) = 0.
Then, (i) is equivalent to (ii) and (iii) is equivalent to (iv).
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This theorem makes clear that to té&f,,, andH ., one can equivalently focus on the Kullback-
Leibler divergencelL(P||Q;(f.)). Our Bayes test is based on Bayes factor and comparison of
marginal likelihoods. There is a strict link between marginal likelihood and the Kullback-Leibler
divergence: log-marginal likelihood of the base model behaves asymptoticallytas( P||Q; (6.))
plus a penalty term, where the penalty depends on the number of parameters to estimate, and sim-
ilarly for the log-marginal likelihood of the extended model. We are going to demonstrate this fact
in the rest of this section.

From theChib (T99% identity, we have for the base modgl € © C R?,
IOg m(wlin’Mb) = IOg 7T'(9’-/\/lb) + IOg q\(wlzn‘ea Mb) - IOg 7Tn<8‘w1:n7 Mb),

and similarly for the extended model. Because this identity is true for éveryo, it is true for

0 = 6.: log m(wy.,| My) = log (0| My) + log G(w1.,|0x, My) — log 7" (8. |w1.n, M,). Next, let

us introduce the local parametérs:= /n(6 —0.,) andh,, := \/n(¢ —1,), so that by the formula
for transformation of random variables? (6|wy.,, M) = =, (v/n(0 — 60.)|wi.m, My)n?/? and

T (Ylwin, Me) = 7, (VR( =1, )|, Me)nPH472, wherer, (- [win, M) andmy (-[win, M)
denote the posterior density bf andh,, respectively. By replacing this in the expression of the
marginal likelihoods we obtain:

log m (w1 | M) = log (0| M) + log G(w1n|0, M) — log mh (vV/1(0 — 6.) | w1, M) — glog(n)

= log 7(0.| M) + log G(w1.n |0+, My) — log 7 (0|w1.p, M) — glog(n),

(4.1)
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and

log m(wy.,|M.) = log w()|M.) + log (w1, |10, M)
—log Wgw(\/ﬁ<¢ — o) [ Wi, Me) —

= log 77(7?0’/\/16) + log a(wl:n‘woa Me) - lOg T‘-Zw (O‘wlina MG) -

d
pJ; =log(n)

p+dy

log(n).

(4.2)

The intuition for expressing the posterioréiin terms of the posterior of the local parameter is that
the Jacobian of the transformation makes explicit the role played by the dimension of the model
while the local parameter has a posterior distribution that is approximately Gaussian. This is true
in both case¢i) and(iii) of TheoremZL

Therefore, the log-marginal likelihood is equal to the sum of two terms that are bounded in
probability asn — oo — these are the prior @f, or ¢, and the posterior of the local parameter—,
and two terms that are diverging with the log-ETEL and the term involving the dimension of the
model. Consequently, asymptotically the marginal likelihood behaves like a penalized log-ETEL
criterion where, remarkably, the penalization is coming from the prior distribution and is not ad-
hoc.

Of course, to be sure that a testing procedure based on marginal likelihood works, one has to
show thatr}, (v/n(6 — 0.)|wi.n, M) andmy (v/n(y — b, )|win, Me) are bounded in probability
asn — oo on the support of the prior. This can be quite challenging, in particular in non-standard
models like the one we are considering here where there is no parametric likelihood and where
models can be misspecified. We provide these results in The@&andC=7in the Supplemen-
tary Material, which are refinements of Theorems 1 and@hib et al.(2018. Compared to the
latter, we offer a new proof of the stochastic local asymptotic normality (LAN) of the log-ETEL
(see TheoremEl, C2andC3in the Supplementary Material) that is more direct because it ex-
ploits the specific structure of the instrumental variable regression problem. Stochastic LAN is an
essential step to prove asymptotic normality of the posterior distribution of the local parameter.

The final step in order to have a clear comprehension of the marginal likelihood is provided by
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Theorem& 2 and4_3 below which supply an asymptotic expression for the log-ETEL in the base
and extended models. For simplicity, we recall the expressions of the log-ETEL function for one
observationu;:

A0 g5 (wi,0) AW ge (w3.0)

log q; (0| M,) = lo =~ , log q;(Y|M,.) = lo
8 Gi(0| M) 8 S O] 8 %:(vV[Me) B

A1)/ ge (wy.0)

so that the log-ETEL functions alez G(w,.,|0, M;) := >, log §:(0|.M,) andlog §(w1.,,[¢), M.) :=
?_, log @;(v¥| M.), respectively. The assumptions under which the following results hold are rel-

egated to sectiod-2 in order to facilitates readability and because they are standard assumptions.
Theorem 4.2 (Base model.l et Assumption - @ andB (d)-(f) hold. Then,

log §(win|0., My) = —nlogn — G, [7(\, 0.)gs(wi, 0.)'] QL(0.) Gy, g (ws, 6.)]

n e (0x) gy (wi,0x) ~ ,
+ izzllog (E[ex*(e*)/gb(wj,a*)o +n(A(0:) = A(0.)) Elgy (wi, 0.)]

+ ;Gn 71, 0.)g0(wi, 0.)'] Q1(0.) 71y [71(M, 0.)gb(wi, 0.)] + 0,(1), (4.3)

whereG,, [7/(\., 0.)g(w:, 0.)] < N (0, QL(6.)), 7I(\., 0.) == [dQ*(0.) /dP)(w;) and 2L (6.) :=

EQ"0-)[¢,(0,)?w;w)).

For the extended model, we recall that = (¢, )’ denotes the true value of the parameter

in the extended model with, = E[¢(6,)x].

Theorem 4.3 (Extended model.)Let Assumption&, B with © replaced by, @ andB (d)-(f) with
0. and \,(0.) replaced withd, and0, respectively, hold. Then,

1Og a\<w1:n|¢o7 Me) = _nlog n— ;Gn [ge(wia ¢o)l] Q@ZOIGn [ge(wia ¢o)] + Op(1>> (44)

whereQy, = Elge(w:, ,)g. (wi, 1)), and Gy, [ge (wi, )] Q5 G [ge(wi, 10,)] % 3, wherex?

denotes a chi square distribution withdegrees of freedom.
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It is clear that ifE[e;(0,)z;] = 0, so that the assumptions in TheorBm@ hold with ¢, replaced

by 6, then
. 1 _
IOg Q<w1:n|007 Mb) =N logn - iGn [gb(wi; 60)/] Qo 1Gn [gb<wi7 00)] + Op(1)7 (45)

whereQ), = E[e,(6,)2@; @] because., (6,) = A, (6,) = 0, and moreove®,, [g(w;, 0,)] Q' G, [g(w;, 0,)] %
X3, wherey? denotes a chi square distribution witdegrees of freedom. Similarly,[e;(6,)x;] =

0, then
_ 1 "o
log Q(wlznhbov Me) =N logn - §Gn [gb(wi7 00) ] Qo lGn [gb(wi7 Qo)} + Op(1> (46)

andG,, [gy(w;, 1,)'] Q;:Gn (g (ws, 10,)] x3- Hence, when: is exogenouslog g(w.,|0., M)
andlog q(w., ¥, M.) are equal asymptotically and they cancel in the comparison of the marginal
likelihoods.

In case of endogeneity, insteddg ¢(ws.,|6,, M,;) andlog q(ws.,|v,, M.) are different and
they play a central role in the comparison of marginal likelihoods. In this case, it is important
to consider the behaviour of the average log-ETEL function. We then have the following two
corollaries which are useful to relate the asymptotic behaviour of the average log-ETEL function
to the Kullback-Leibler divergence. We point out that, while this type of results is implicit in the
definition of the ETEL, we provide here a formal proof. In our setting, it is important to explicit

these results because they allow us to understand the behaviour of the marginal likelihood.

Corollary 4.1 (Base model.) Suppose Assumptiofiis @ andB (d)-(f) hold. Then, as — oo,
1. «
—log G(w1n)0s, My) +log(n) & B [log(dQ;(6.)/dP)], (4.7)

whereE” [log(dQ;(6.)/dP)] = B {mg(”““))] — _KL(P||Q;(6.).

E[e)\*(e*)lgb(wﬁ*)]

Corollary 4.2 (Extended model.) Suppose AssumptioBs3 with © replaced by, @ andB (d)-(f)
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with 6, and \.(6,) replaced withd, and0, respectively, hold. Then, as— oo,
1. x
—log G(win|tb,, M.) +log(n) & B [log(dQ: (v,)/dP)], (4.8)

whereE” [log(dQ; (v,)/dP)] = B [log (peieel ) | = KL(PYQi(.).
Notice thatE” [log(dQ:(v,)/dP)] = 0 since the extended model is correctly specified and so

dQ¢(¥,)/dP = 1.

From Theorem&2 and4=3, and Theorem&6 andC7 in the Online Appendix and from
(271)-(E222), then there exists alN such that for every, > N:

n 6/\* (6*),gb(wi19*)
log m(w1.,| Mp) —nlogn + ) _log BRI
i=1

+n((6.) = A (0.)) Elgy(w;, 0.)] — £ log(n), (4.9)
p+dy
2

log m(wy.n|M.) = —nlog(n) log(n). (4.10)

From these expressions, one sees that when the models are both correctly specifielly[th@t.is;;] =

M (05) gp (w;,0)
[ek*(g*)’gb(w]‘ﬂ*)]

0, then\.(6.) = 0and}_? , log (E ) = ( for everyn € N. Therefore, it is clear that
asymptoticallylog m(wy.,| M) is larger tharog m(wy.,,| M.).

On the other hand, when there is 6o © such thatE[e;(0)x;] = 0, then\.(0.) # 0 and

X (05) gp (w;,0%)

*, log ( E{e*ﬂ(’*)’gb(wrﬂ*)}) diverges to—oc faster than the last two terms i@®), so that asymp-

totically log m(w1.,| M) is smaller tharog m(w.,|M.). This is the main intuition of the con-
sistency results in Theorerd4 and435 in the next section. The proof of these theorems is more
complicated than this arguments because the theorems provide an if and only if statement which is

stronger than consistency.
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4.3 Consistency of the testing procedure

We now use the preceding theory to establish consistency of our testing procedure based on the
Bayes factor constructed from the marginal ETEL functions. The theorems below establish that,
as the sample size increas®d;,, selectsM, if and only if = is exogenous, and selectd. if and

only if x is endogenous, with probability approaching one.

Theorem 4.4 Let Assumptiond, @, @, B, [4 hold and let Assumptiori3 and B hold for 6, and

A (0.) and also forf, and ). (6.) replaced withd, and 0, respectively. Let the priors chand

be continuous probability measures that admit densities with respect to the Lebesgue measure and
that are positive on a neighborhood &f and_, respectively. Let us consider the comparison of

modelsM;, and M.. Then,
Ji_)rgoP(log m(wy.,|M.) > log m(wy.,|My)) =1

if and only if there is n@ such thatE[s;(0)z;] = 0 holds, and the limit is zero otherwise.

As we show in the proof, the failure of the necessary and sufficient condifiq(¥)x;] = 0 for
anyé, is equivalent to the inequality KIP||Q%(v)) < KL (P||Q;(0)), where KL(P||Q%(¢,)) = 0.

Thus, as in the general result@hib ef al.(2018 Theorem 3.2) for moment condition models,
comparing the log marginal likelihoods of the base and extended models, and selecting the one
with the higher value, in the limit, selects the model that is closest in the KL divergence to the
true model. In the framework of the present paper, this means that the correctly specified model is
selected.

Next, we show what happens when the variablesre exogenous so that the moment re-
strictionE[¢;(0)z;] = 0 holds for a particular valué, and the two models under comparison are
correctly specified. The next theorem states that in this case the base model is selected. This
is understandable through an argument of parsimony: the base model has the smaller number of

parameters to estimate and so it is the preferred one when it is correctly specified.
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Theorem 4.5 Let Assumption®, B, @, B, (4 hold and let AssumptioridandB hold for bothd, and

A« (0.) and also forf, and \.(6.) replaced withd, and 0, respectively. Let the priors chand

be continuous probability measures that admit densities with respect to the Lebesgue measure and
that are positive on a neighborhood @&f and ), respectively. Let us consider the comparison of

modelsM, and M.. Then,
Jim P (log m(wi.n| M) > logm(win|M.)) =1
if and only if there is &, such thatE[e;(6,)z;] = 0 holds.

Discussion. In this and previous subsection, we demonstrate that our model selection criteria
favor a model with a smaller Kullback-Leibler Information Criterion (KLIC). When two models
share the same KLIC, our procedure opts for the model with a greater number of restrictions, i.e., a
more parsimonious or less flexible model. Interestingly, this aligns with the g&hand Whife
(T998's penalized likelihood criteria for a parametric model. Consequently, our proposed model
selection procedure in this paper édfib et al.(?0T8§ can be viewed as a fully Bayesian semi-
parametric version of consistent model selection criteria, applied specifically to an endogeneity
testing problem. Unlike other frequentist procedures, the ‘penalty’ term required for consistency
is inherently built into our Bayesian calculation.

Andrews(1999, Andrews and 120071, andHong, Preston and Shu(@003 have proposed
and studied model selection criteria for moment condition models, even though a formal likeli-
hood function is not defined. These criteria involve a penalization term that is attached to the
Generalized Method of Moments (GMM), and more broadly, the Generalized Empirical Likeli-
hood (GEL) objective function, rather than the likelihood function. Examples of such frequentists
model selection approaches based on GMM estimation can be found in Ap@erdiowever, the
relationship between these model selection criteria and the KLIC minimization princijseiof
and Whife(T996) for potentially misspecified parametric models is not immediately apparent.

It is noteworthy that our procedure exhibits the same asymptotic behavidoms and Pre-
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ston P0T2’s generalized empirical likelihood Bayes factor. They impose a separate prior on the
Lagrangian multiplier that is independent @fwhich does not guarantee the imposition of mo-
ment restrictions. In contrast, we introduce an additional parametieithe ‘inactive’ moment

restriction, ensuring that our prior ghandv respects the moment restrictions.

4.4 Assumptions

We provide the assumptions that we use to prove the results in the previous sections. The first
assumption guarantees that the dual representation of the optimization pr@keimo{ds even
whenP ¢ Q,, for everyd € ©. In fact, in the latter case it is possible th@}(¢) and P do not
have a common support for adlyin which case, the equality if?{4) does not hold, seBueishi

(2013 for a discussion on this point.

Assumption 1 (Non-emptyness.WhenE”[¢;(0)z;] # 0 for everyd € O, there exists) €
Ugeco Dpo Such that() is mutually absolutely continuous with respectitpwhereQ,,, is defined

in (32).

This assumption implies that there i§ for which Q, » is non-empty, thadQ;(0) /dP = (M"(“))

E[ez\*(e)’g(w,e)]

and that, is identified by B23). We then assume théf is unique.

Assumption 2 (Identification.) The maximize#, defined as the minimizer 8fL(P||Q*(#)) with
respect td € © is unique and is in the interior &b, where the interior is defined with respect to

the topology inR?.

Since under Assumptidé, coincides with the minimizer iri3), then the previous assump-
tion implies uniqueness also of the latter. The next three assumptions concern the model. Recall
the notationw; := (i, z}, 2;)', zi = (21, 25;) andw,; = (rj,2),). Moreover, we denote

1) ™

w; = (2%, 2}), ]| - ||2 the Euclidean norm angl- || » the Frobenius norm.

1771

Assumption 3 (a) w;, 7 = 1,...,n are i.i.d. observable random variables each one taking values

in a complete probability spad@V, By, P), whereW C R, 9B, is the associated-field and
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P is a probability distribution satisfying modé@B1); (b) © C R? is compact and connected; (c)
for every) in a neighborhood o, (6,), the matrixE[eX = (@-)¢,(9,)2w;w]] has smallest (resp.

largest) eigenvalue bounded away from zero (resp. infinity).
Assumption 4 (a) E[w;w; ;] < oo with rankp.

Assumptiond3 and@ are standard in the literature, seg. Schennaclf?007. The following
assumption instead, is new and it is used to prove the approximation for the marginal likelihood.
We denote byw;, , the k-th component ofy;. Moreover, for anyy > 0 and for some constant
C > 0 we denote byBs(\.(0.)) := {\ € RE X — \(6,)|2 < C6} (resp. Bs(0.) :== {0 €
RP: |10 — 6.]|2 < C0}) a closed ball centered around(6..) (resp.6.) with radiuso, where|| - ||2

denotes the Euclidean norm.

Assumption 5 (a) For anys > 0 and everyw;, there is a function, (w;) such thaﬂe”aﬁiw*)wia(e*) ,

< vo(w;) for every\ € Bs(A.(6.)) and everyd € Bs(6.), and E[y,(w;)] < oo; (b) for any

§ > 0 and everyw;, there exists a function, (w;) such that’exam(e*)

< 7, (w;) for every
A € Bs(A.(0.)), everyd € Bs(6.) andE[y,(w;)] < oo; (c) for 5, ¢, = 1,2, foranyk =1,...k
and every) > 0 there exists a function,(w;) such thaleEifi("*)gi(Q)f Ll (W) ‘ < o (w;)

for every\ € Bjs(\.(0.)), everyw;, everyf € B;(f.) and everyh in a compact set, and

|

is bounded away from infinity for eveky=1,...,d, anyd > 0 and for/ = 3, 4;

E[v,(w;)] < oo; (d) the following operator norm

E [ sup He“’m’\laﬁi(e*)aiw )wa,fzb w;
AEBs(A«(0+))

(e) foranys > 0, E {Sup/\GBé(A*(g*)) e\ wisi(0-) ¢, (9,)2 ||wi||§} < oo; (f) foreveryj k =1,....d
and everyd > 0 there exists a functioh; (w;) such that‘e*’gi(wiﬁ*)wi,jwi,kai(6*)2‘ < bjk(w;)
for every\ € Bs(\.(0.)) andE[b; ,(w;)] < oo; (g) foranyj, k = 1,... k, everyw;, and every

§ > 0 there exists a function,(w;) such that’exaisi(a*)si(Q)wi7kwi7]~h’@17i

< 74(w;) for every

A € Bs(A(0.)), everyd € Bs;(0.) and everyh in a compact set, anl [y, (w;)] < co.

22



For the next assumption denote ®y, := {||0 — .| < M,,/\/n}, a ball around, with radius
at mostM,, //n, whereM,, is any sequence of positive constants diverging-te. We denote
by 4, o(w;) the log-likelihood function for one observation: ¢, ¢(w;) := log g;(0|M,) and by
lro(Wiy) == S0 lho(w;) = logg(wy.,|0, M) the log-ETEL function. The next assumption
controls the behaviour of the ETEL functién— ¢, o(w;) at a distance frord, and it ensures that

0, is well-separated from th#s that are at a certain distance from it.
Assumption 6 (Base model.)Assume that there exists a constanht- 0 such that

12 M?
P <sup —Z (lro(w;) — Lg, (w;)) < —C ”) — 1, asn — oo, (4.11)

0eOs, n i=1 n

where),, is the same sequence used to define

A condition similar to Assumptioifd is in Kleiin-and van der Vaar{?012 Lemma 4.2) and it

is also related to the classical conditiondry. Lehmann and Casel@g998 Assumption 6.B.3)

and Chernozhukovand Hon(P003 Assumption 3). To better understand the meaning of this
assumption, note that asymptotically the log-ETEL function is maximized at the pseudo-true value
0.. Hence, Assumptiord(T]) requires that if the parametéris far from the pseudo-true value
6., thatis||0 — 6.|| > M, /+/n, then}? , £, o(w;) evaluated at such has to be small relative to
the close to the maximum valge; , ¢, o, (w;). Controlling this behavior is important because the
posterior involves integration over the whole support.oSubsets 0 that can be distinguished
from 6, uniformly (with probability approaching asn — oo) based on the ETEL function will
receive a posterior probability that is asymptotically negligible. An alternative to this condition
would be to require the existence of asymptotically consistent gestisat are able to distinguish
from the true distributionP in a uniform way, that is, for every > 0 there exists a sequence of

tests{ ¢, } such that as — 0O,

E[p,] — 0, and sup E [eeme(wi)*gnﬁ* (wi)(1 — ¢n)} — 0. (4.12)
{0:[10—0+]| >}
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Similarly, for the extended model we denotedy; (w;) the log-likelihood function for one obser-
vationwg: £y (w;) := log i(¢|Me) and by, y (win) = il o (wi) = log q(win|th, M) the
log-ETEL function. The next assumption has the same interpretation of Assurigtiairfor the

extended model.

Assumption 7 (Extended model.)Assume that there exists a constéaht- 0 such that as. —

00,

1 CM?
P sup = by (wi) = oy, (wi)) < — — 1, (4.13)
[ —toll>Mn /v T =1 n

wherel,, is any sequence of positive constants diverging to infinity.

4.5 Experiments

Consider the same generating process as Example 1, and supposg,thhat;) have a joint
T . . . . [1p0

distribution induced by a Gaussian copula with covariance matrix <8 'g (1)> The parameter

p controls the degree of endogeneity. Weddake values in the set from -.5 to .5, in increments

of 0.1. For each value gf in this set, we generate 100 samples of sizé~or each sample, we

compute the the base and extended models, and calculate the log-marginal likelihoods. We then

count the number of times the log marginal likelihood/df, exceeds that aM,. The results are
given Tablel. We can see from this table that even for small values, @iur test of endogeneity

correctly concludes that the correct modelit..

P -05 -04 -03 -02 -01 00 01 0.2 03 0405

n=20 99 96 82 48 12 2 18 54 93 100 100
n=>500 100 100 98 76 17 1 29 87 99 100 100
n=1000 100 100 100 96 46 1 46 100 100 100 100
n =2000 100 100 100 100 80 1 70 100 100 10000

Table 1. Model selection frequencies from 100 replications of data simulated from the design in

Example 1. For each combination efandCov(s,u) = p, the entries give the number of times
in 100 replications of the data that the log-marginal likelihood\df exceeds the log-marginal
likelihood of M,,.
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5 Real data examples

5.1 Causal effect of price on automobile demand

We consider the classic problem of automobile demand dekiiry, I evinsohn and Pak¢s995).

This problem has recently been revisited®Birernozhiikov, Hansen and Spind{@01%, hence-
forth BLP and CHS, respectively. Apart from its intrinsic value, this problem is worth analyzing
because it involves a realistically large number of controls and instruments.

To set up the problem, lef;;; denote the log of the ratio of the market share of product
in market; at timet, relative to an external option, and let; denote the potentially endoge-
nous automobile price variable. In the sample data, this variable is demeaned. For controls,
let z;;, denote the observed characteristics of the product. In BLP these are taken to be a con-
stant, an air conditioning dummy:4-), horsepower divided by weightifwt), miles per dol-
lar (mpd), and vehicle sizespace). In our notation,y;;; = ;8 + 21,57 + €, Wherezy;;; =
(1, mpd;ji, space; i, hpwt,ji, airyj;, ). BLP used ten instruments, five formed by summing the value
of these five characteristics over other automobiles produced by the same firm and five formed by
summing the above characteristics over automobiles produced by other firms. Thesg forim
revisiting this analysis, CHS augment the original controls with quadratics, and culzies:if
mpd, space, hpwt, and all first order interactions, and then used sums of these characteristics as
potential instruments.

In our analysis, we consider both formulations, but in the augmented variant we introduce non-
linear controls by transforming each o¥nd, hpwt, mpd andspace by natural cubic spline basis
functions, each centered at five equally spaced quantile knots (the cubic spline basis functions are
taken fromChib-and Greenber(P0T()). We opt for this approach to avoid widely different co-
variate values from parametric quadratic and cubic terms of these covariates. After the imposition
of an identification restriction on the basis expansions, which reduces the number of nonlinear
terms to four for each continuous covariate, the RHS of the augmented outcome model is defined

by = (price) andz; (consisting of an intercept, sixteen nonlinear covariates, denoteéckhy s j,
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mpdg;, spaceg; and hpwtg;, for j = 1,...,4, and the air-conditioning dummy). The set of
augmented instruments that foemin this augmented model are then constructed as in BLP.

We fit four models to these data: the base and extended models under the controls and in-
struments in BLP, and the base and extended models under the augmented set of controls and
instruments. In the BLP version, the base and extended models contain six and seven parameters,
respectively, and ten instruments, while in the augmented variant, the base and extended models
have nineteen and twenty parameters, @hthoment restrictions. We assume that the- 2217
observations offy;;., x;;:, 21,5¢) are a random sample from the population of automobile products
across markets and time. Because it is difficult to formulate priors on the parameters by a priori
considerations, we randomly seldét/ of the sample to make training sample priors. In particu-
lar, we used the GMM estimate and its standard error fitted on the training data (model by model)
as the prior mean and twice the GMM standard error as the prior standard deviation. The ETEL
is constructed from the remaining data and the posterior distribution of each model is sampled by
the single block M-H algorithm ofhib"and Greenber(39%. This algorithm is fast and effi-
cient despite the relatively large numbers of parameters and instruments. The results show that
the posterior mean of the coefficient pnice is -0.14, and the 95% posterior credibility interval
is (-.16,-.13). The posterior mean is larger in magnitude than the OLS estimate originally reported
by BLP. Note that the posterior distribution of the covariance parameter,concentrated to the
right of zero, indicating that thgrice is likely endogenous.

For confirmation, we turn to our formal test of endogeneity. The results are reported in Table
U. We can see that the marginal likelihood is larger for the extended models in both the original
BLP and the augmented BLP specifications, supporting the conclusion that price is endogenous.

We conclude this analysis by plotting the posterior distributions of the price coefficient from
each model. The estimated effect of price on automobile demand is larger (in absolute value)
when endogeneity of price is taken into account. Interestingly, the price effect is smaller and more
concentrated in the augmented models, suggesting that some of the excess sensitivity to price

observed in the orginal BLP model is due to the omission of the nonlinear controls. In addition, it
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Original BLP (Linear) Augmented BLENonlinear)
Base model (price is exogenous) -14386.81 -14431.86
Extended model (price is endogenous) -14364.59 -14397.67

Table 2: Results from the proposed Bayesian test of endogeneity. The log marginal likelihoods for
the base and extended models under the original BLP model and its augmented variant. Results
based on a training sample prior (using randomly selected 15% of the data) and 10,000 MCMC
iterations (beyond a burn-in of 1000) of a tailored single block M-H algorithm. Logarithm of
marginal likelihoods are computed by the methodbib (1995 andChib-and Jeliazkoy2007).

is worth noting that if we were to only fit the base model (which the marginal likelihood confirms

is misspecified in this case) we would miss the fact that incorporating nonlinearities impacts the

posterior distribution.

Model

Base model, Linear
Base model, Nonlinear
m Extended model, Linear

Extended model, Nonlinear

Density

A

1 i
-0.25 -0.20 -0.15 -0.10

Effect of Price on Automobile Demand

Figure 4: BLP models: Marginal posterior distributions of the coefficient on the price variable,
(5. Posterior mean and standard deviationsoare -0.089 and 0.004 for the base model with
the original BLP (linear) specification while they are -0.087 and 0.004 with the augmented BLP
(nonlinear) specification. For the extended model, posterior mean and standard deviatene of
-0.183 and 0.015 for the linear specification and -0.143 and 0.009 for the nonlinear specification.

5.2 Effect of airfares on passenger traffic

The emphasis of the theory and applications in this paper is on situations with a single outcome
variable, however, our framework can be applied more broadly. An important example is clustered,

longitudinal data. Let; = (y1,...,y;r) denoteT potentially correlated and heteroskedastic
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measurements on subjectThe outcome is thus & x 1 vector, rather than a scalar. Adjusting

the dimensions of the controls and instruments, respectively, suppose that independently across
the clustered outcomes follow the linear mogek X3 + Z, ;v + ¢;, whereX, isT x d,, Z, ; is

T xd,, Z;isT x d,,, ande; isT x 1. Now assume that, ; andZ, ; satisfy the clustered data
exogeneity restriction8[Z} ;¢;(0)] = 0, j = 1, 2, but that the clustered data exogeneity restrictions
E[X][e;(0)] = O related taX; are in doubt. We can apply our framework to this problem by defining

a base model in which the latter restrictions are imposed, and an extended model that contains the
inactive restrictiong’[X/e;(6)] = v, wherev is now ad, x 1 vector of unknown parameters. In
parallel to the approach developed above, the marginal likelihood comparison of these models is a
test for the exogeneity oX .

As an illustration of this extended set-up, we considér a& 4 balanced longitudinal data
(20710). For each yeat, t < 4, the data is clustered by routgi < n = 1149. For each flight route
defined by the origin and destination cities, one has the log of the average number of passengers
per day (passen), the log of the average one-way fare in dolldi&:(¢), the log of the distance in
miles (dist), and the fraction of the market corralled by the biggest careieiden). The model
of interest islpassen; = Blfare; + vy trend; + v,ldist, + 1, Wheretrend is a trend variable
taking valued, 2, 3, 4, and each of the variables in this regression is mean centered. The goal is to
estimate the price elasticity parametgrbut one is concerned thatare is possibly endogenous.

In the estimation we assume that.cen is a valid instrument (it does not directly appear in the
outcome model and it affectgare, both reasonable assumptions).

Clustered by route, we have

Ipassen;, lfare;; 1 ldisty €i1
B
Ipassen;s [fare;s 2 ldist €i2
- ' Y| T ’
Ipassen;s lfare;z 3 ldist;s €i3
Y2
Ipasseny lfare;,s 4 ldisty €i4
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or compactly ag; = WM@ +ei,0=1,2,...,1149, wheref : 7 x 1 is the unknown parameter of
interest. In this model, the distribution ef is not specified. Moreover, the elementssptan be
serially correlated and heteroskedastic in an arbitrary, unknown way.

Now let Z; := (VNVM, 1, conceni), 1 < n, be a4 x 5 matrix, wherel is a vector of ones, and
concen; = (conceng, . .., conceny) : 4 x 1is the vector ofoncen values for route. In the base

model,l fare is exogenous. The model is defined by the five moments
Mb . E[Zzl(yl — XZQ)] = 05><1

In the extended model, thig¢are moment condition is inactive. Specifically,

M. E[Z(y; — Xi0)] =
04><1
The ETEL-based estimation of these two models makes no assumption about the joint distribution
of the cluster-level errors.

We specify the prior from a training sample. We randomly split the sample into a training
sample (of say 115 clusters, equal to 10% of the total clusters) and an estimation sample (consisting
of the remaining 1034 clusters). We then estimate the base mode on the training sample with a
student-t prior centered on the system wide 2SLS estimate from the training data, sd of 10 and 2.5
degrees of freedom. The posterior mean and sd is calculated from these training data under this
prior. We then take the posterior mean and twice the sd from the training sample fit as the mean
and sd of the prior. This determination of the prior from the training sample is helpful in the fitting,
but, due to the thick tails of the prior, the information brought in by the prior pales in comparison
with the information from the estimation sample.

We sample the posterior in each model by the one-block tailored MCMC algorithm. In the
base model, from 10,000 MCMC draws beyond a burn-in of 1000, we find that the posterior mean

of 5 is -0.551 and its 95% posterior credibility interval is (-0.683, -0.419). Moreover, computation
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shows thatiog(m(wy.,|M;) = —7190.222 andlog(m(wy.,|M.) = —7191.06, signalling that

Iprice in this problem can be viewed as exogenous.

6 Concluding remarks

This paper has developed a Bayesian test for exogeneity/endogeneity of the treatment vector of
interest in a linear mean regression model. This endogeneity problem is generally assumed away
in the Bayesian literature, but this leads to a serious misspecification problem since endogeneity, in
practice, is the rule, rather than the exception. In order to avoid the risk of distributional misspeci-
fication, the framework we have developed relies only on moment restrictions. The analysis in the
paper revolves around the study of two models: the base model, where the exogeneity assumption
is enforced, and an extended model, where the exogeneity moment is included but is made inactive.

The testing procedure for exogeneity/endogeneity is based on Bayes factor where the marginal
ETEL of the base and the extended models are compared. The procedure is validated from a fre-
guentist point of view because we establish the large sample consistency of the Bayes factor test.
In addition, we provide a comprehensive study of the log-marginal ETEL function and determine
which parts of it plays a role in the testing procedure depending on whether the covarates
exogenous or endogenous.

The real-data examples discussed in the paper showcase the practical relevance of the methods.

It is important to mention that the approach proposed here can be extended to situations where
the controls are assumed to enter the model nonparameterically. While the finite sample analysis of
such models, after approximating the unknown functions by (say) spline basis expansion methods,
would proceed in much the same way as discussed in this paper, the specification of the prior and
the large sample analysis would require new developments to account for a growing number of

basis function parameters with sample size. We intend to describe the theory in a future paper.
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Online Appendix

A Comparison with GMM-based criteria

There are frequentist approaches to the model (or, moment) selection that can be applied in our
context. Andrews (1999 develops a class of moment selection criteria (MSC). Below are some

popular criteria that fall into the class:

GMM-BIC = J,(¢) — (J¢| = p)Inn
GMM-AIC = J,(c) — 2(|¢| — p) (A.1)

GMM-HQIC = J,,(¢) — 2.01(|¢| — p) Inlnn,

wherec is a moment selection vectae| is the number of moment conditions selected:by s the
number of parameters to be estimatég,c) is the J test statistic for over-identifying restrictions
constructed usingwith the optimal weighting matrix. Similar to the traditional BIC, these criteria
penalize model complexity based on the number of parameters and the number of restrictions
imposed. The model complexity increases when the number of parameters increases or the number
of restrictions decreases. This idea was extendeddng et al.(?003 to GEL estimation.

We have revisited our simulation exercise, originally presented in the main text [gble
and now report results based on other Frequentist methods: GMM-BIC, GMM-AIC, and GMM-
HQIC. From the table, several points can be made. First, all methods exhibit model selection
consistency, meaning the probability of selecting the true model approaches one as the number of
observations increases. Second, our approach has stronger discriminatory powerisvblese
to zero compared to GMM-BIC. Third, GMM-AIC and GMM-HQIC select the right model more
often whenp is not zero (no endogeneity). However, they seem to over-select the model with
endogeneity when there is no presence of endogeneity. In summary, under the data generating
process considered in this example, our BETEL-based model selection performs better than other

alternatives, especially in a finite sample.
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Table 3: Table 1 with other Frequentist approaches. Model selection frequencies from 100
replications of data simulated from the design in Example 1. For each combinatiorand
Cov(e,u) = p, the entries give the number of times in 100 replications of the data that the log-
marginal likelihood ofM. exceeds the log-marginal likelihood &ff,. The numbers for BETEL

are slightly different from those reported in the main text because they are based on different sets
of simulated data, i.e., the random number seed is different.

BETEL -05 -04 -03 -02 -01 0 01 02 03 04 05

250 99 96 82 48 12 2 18 54 93 100 100
500 100 100 98 76 17 1 29 87 99 100 100
1
1

1000 100 100 100 96 46 46 100 100 100 100
2000 100 100 100 100 80 70 100 100 10000

GMM-BIC -05 -04 -03 -02 -01 0 01 02 03 04 05

250 100 97 77 35 7 3 11 40 84 99 100
500 100 100 96 72 8 1 16 74 99 100 100
1
1

1000 100 100 100 92 29 25 99 100 100 100
2000 100 100 100 99 63 47 100 100 10000

GMM-AIC -05 -04 -03 -02 -01 0 01 02 03 04 05

250 100 100 9 74 28 15 37 79 98 100 100

500 100 100 100 94 46 11 60 98 100 100 100
1000 100 100 100 99 71 11 76 100 100 100 100
2000 100 100 100 100 95 12 94 100 100 10m0OO

GMM-HQIC -05 -04 -03 -0.2 -01 O 01 02 03 04 05

250 100 99 85 54 17 5 20 62 94 99 100

500 100 100 100 82 23 3 31 89 100 100 100
1000 100 100 100 98 54 2 56 100 100 100 100
2000 100 100 100 100 79 1 73 100 100 10DOO
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B Proofs of the main results

The following notation will be used in the proofs. Further notation will be introduced in the Sup-
plementary Appendix and will be used in the proofs there. When we gnfibm the vector of
the i-th observation we use the notation := (2}, z;)’, and when in addition we omit, ; we use
the notationw, ; := (), 2{,)’. We use the notatiolt,,[-] :== + >, [] for the empirical mean.

For a probabilityQ we use the notatioft?[-] to denote the expectation with respectoand

Varg the variance with respect Q. For the true distributior?: E[-] := E”[-]. We use stan
dard notation in empirical process theof;; := E,[d,,] whered,, is the Dirac measure at and
Gng := /n(P,f — Ef) for every functionf.

For a function\(6) of 4, definer! (), 0) := % sothatr; (), 0) = np;(0) andr! ()., 0) =

dQ*(0)/dP. We also use the notatiof: (), 0) := E[13(\, 0)e;(0)ww}], Q2(0) := Q2(\,,0) and
QL(0) := E[r](\,, 0)e;(0)wyw]] = B2 O[e,(0)w;w)]. Moreover, = Q2(6,).

B.1 Proof of Theorem&41

We first show thafi) is equivalent tqii). Supposdi) is true. Thenp ¢ 9, , for everyf € © and
the I-projection of P on the setQ,  is different fromP, Q;(6) # P, for everyd € ©. It follows
that also the reverse Kullback-Leibler divergence (where we have inverted the role played by the
two probabilities) is strictly positiveKL(P||Q;(6)) > 0, for everyd € ©. Since this is true for
everyf € O, itis also true fo,. Hence(ii) holds.

Now, suppose thdi) is true. Becaus&L(P||Q;(0.)) > 0, thenP # Q;(0.) andP ¢ Q..
Sinced, minimizesKL(P||Q;(0)), then we also have thd ¢ O, , for everyd € ©. Hence(i)
holds.

Next, we show thafiii) is equivalent tqiiv). Supposdiii) holds. Then, there is@& € ©, say
6., forwhichP € Q.. HenceQ;(6.) = P andKL(P||Q;(#)) = 0. Hence(iv) holds.

Now, suppose thdiv) holds. By the properties of the Kullback-Leibler divergeri€&( P||Q;(6..))
= 0ifand only if P = Q;(0). It follows thatP € Q. becaus&);(0.) € Q4. and therefore?
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satisfies the moment restricti@t’[¢;(0.)z;] = 0. Hence(iii) holds.

O
B.2 Proof of TheoremZ.2
Let us consider the expression for the likelihood evaluatéq:at
n 1 n ~ ,
10g a(wlzn‘ew Mb) = —nlogn Z gb wza ) nlog - Z e)\(a*) 90(105,0-)
n =
=1 j= 1
1
= —nlogn + Z /\ <) gp(w;, 0,) — nlog — Z M0) g (w;.0+
=1 TL
(B.1)

= —nlogn + Z)\ ) G(ws, 6,) + nX(0,) Elgy(w;, 6,)] — nlog — z:eA 0)'90(w;.0x)
n

J=1

=1

whereg, (w;, 6.) := gy(w;, 0.) — E[gy(w;, 0,)]. We first deal with the second term on the right hand

side of B-). By using the result of Lemma=2:

nooo - , 1 & IR~
Z A(0) g (wi, 0.) = \/E(A(Q*) — A(0.)) n Zgb(wia 0.) + Ae(6s) Zgb(wi, 0.)
=1 1

- _Gn {Tj(/\*, 0*)gb(ww 0*),} QI(Q*)_IG [gb(wzv Z.gb wza 0 . (BZ)
) andA\(6,), then a second order Taylor expansiomof-

Let X be on the line joining\, (6,

Ly, eNootwif) around), (6,) gives

1 /
)L S r 0 ) g, 0.

1n§ 1n/\9)’(,-0) N7 RY
2N MO g (w0 =N M0 g (ws 04) (A(0,)" — —
n; n; nz:1
L~ / /1 SN w; 1N
S0 = X0))- 50 X0y 1, 0.)g1 ;. 0. (M0.) = Xi(0.)). (B:3)
j=1

Under Assumptior and becauséh — A, (6,)]l> = O,(n~"/2) (since by Lemma=1 ||A(6,) —

A (02 = Op(n=1/2) and = 7(A(0,) — A\.(6.)) + \.(6.)) we can apply the same argument of
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the proof of LemmdC_5to get:

L+ / IAYe XS N 1
S0 = A (090 (R0.) — A (60.)) + 0, ()
3 / / 1 " gp(w;,04
= E [Nl 0] 4 (3(6.) — M(6.) )5?::1 e 09 (ws0) g (w0, 6,.)

N| —

_|_

where we have used the fact tHaty-?_, e*+()a (w0 — F [ex*(e*)’gb(wj,e*)] | = 0,(1//n) by
the Markov’s inequality and under Assumptibib). We now use the first order Taylor expansion

), and plug B3B) iniit to

of the functionu +— log(u) aroundv: log(u) = log(v) + “=* 4 of

obtain:

og (37RO ) g (1 o208 (36 A 0.) 30 0.

Z e A04) gy (wi 0) _ E [eA*(e*)IQb(wiﬁ*)} D _

(B.6)

EA r nNOT 2 — !
5 (0. = (0.))921(0.) (30.) )‘*<‘9*)>+Op<\/ﬁ> (

SinceE[r! (A, 0,)g,(w;, 0,)] = 0 and by using LemmB&Z2, then

1

(B0 = 0% 3710 Bt ) + 530 = A(01)LOIR(0.) - 1620

=1
= —Gn [T\, 0o (wi, 0.)'] QL(0.) TG [T (N 0.) g0 (w5, 0.

+ G [ 0.) g (w3, 0,)'] 21(0.) Gy [T1 (M, 0.) g0 (wi, 0.)] + 0p(1)

1
2
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- _;Gn 71O 0.)g0(wi, 0.)'] Q1(0.) 7' Gy [71(N, 0.)gs(w3, 6.)] + 0,(1)  (B.7)

Finally, we have to deal Withl; S A0 g (wids) | [ek*w*)’gb(wiv"*)} ’ By using B3), Lemma

C2and the fact that
Z e ) gp(w;,0 )gb(w“ [n Z €>‘ ) g6 (w;,0 )gb<wi7 0*)‘|
we get thafl 21, MO a(vels) — | [ M0 0w = O,(1/n).

By replacing this resultB2), (B-6), and B) in (B1) we get:

log G(w1.,|0x, M) = —nlogn — G, [TI()\*, 0.)gp(w;, 9*)’] QL(0.)7'Gy, [go(w;, 6,)]
Z wza "’ n)‘(e ) E[gb(wia 9*)] - nlog (E [6)\*(6*)/95(1”“9*)})

+5G [T1 (A, 0.)8(wi, 0.)'] QL0.)7'Gy [7] (A, 02)g(wi, 0)] + 0,(1), (B.B)

[\DM—\

where G, [7/(\., 0.)gy(w;, 0.)] 5 N(0,01(6,)). By noticing that.(6.)' S gy(w;, 0.) —
nlog (E [eM@)a @]} = 50 log (7](\, 0.)) = nA.(60.)E[gy(ws, 0.)), we prove &3,

B.3 Proof of Theoremé4-3

Since we are in the extended model, then there exists a= (6,,v))" such thatE[e;(0,)w;] =

o) O

(vh,0") and\.(,) = 0. Let us consider the expression for the likelihood evaluated at

1 5 ’
log g(w1.p[th,, M) = —nlogn + Z A1) go(wi, 0) — nlog — Y eXe) ol be)

i=1 ni3

1
= —nlogn—i—Z)\ ) ge(w;, 1,) — nlog — Ze V'ge(wiswo) —(B.9)
nj

=1
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We start with dealing with the second term on the right hand sidB&).( By using the result of

LemmaCT4

SR g (100 10) = VAW =3 (w0 0)

=1 i=1

= _Gn [ge(wia wo)/] Q;:Gn [ge(wi> wo)] + Op(l)' (BlO)

Let A be on the line joining) and\(«, ), then a second order Taylor expansion of the function

A 230 eNoe(wife) aroundo gives

1 2PN , 1 n
e D =3 AW gelwi, )
n: n
7=1 i=1
1 1 & ~
AW 3TN g, (w1, )ge (wy, v A(W). (B.A1)
J=1

Under Assumptiof and becausg = O,(n~/2) (since by Lemm&IB\(¢,) = O,(n~'/?) and

) is betweer( andX(@Zzo)) we can apply the same argument of the proof of Lerfihito get:

1 n
~ ZeA 9es0) o (wj, 0o) ge(w;, 0a)' > Dy, = Blge(wi, ) ge(wi, v,)): (B.12)

TL

By replacing this inlB-11) and by using Lemm&-T5to get the rate of the,(1/n) term, we obtain:

Ly Awoyatwiv — 4 1
n = n

SN0 0 ) + AR AW + o1/ (B13)

We now use the first order Taylor expansion of the funcliar{«) aroundu = 1: log(u) =

u— 1+ o(ju — 1|), and plug BZI3) in it to obtain:

1 &~
10g< Ze ) ge (wi b > ﬁZ)\ ge(wsz)

A1) Qu A(¥) + 0, (1/n) 4 0 (‘; zn: AWo) ge(wibe) _ 1|> . (B.14)

i=1
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By using the result of Lemm&-T4, then

(53R )+ FA0Y DA ) = VAL G o VA VA

= G e, 0. ) 905G g )]+ 3G g, )] 051G [, .)) + 0,(1)

= G g, .| 9 G [0, )]+ 0,(1). (B15)

Finally, we have to deal witlﬁ% > N (Wo) ge(wibo) 1‘. By using exactly the same argument

we have used in the proof of Lemni&a? with \.(6.) replaced by\.(v,) = 0 we get that

Ly e o) ge(wirthy) _ 1’ = 0,(1).
By replacing this result andB(15) in (BZT4), and then by pluggindB-10) and B-12) in (B9)

we get:

1
108; Z]\(wlznwjoa Mb) =N logn - §Gn [ge(wi> @Do)/] Q’LZ:GTL [ge(wi> %ZJO)] + Op(l)

1
= —nlogn—§Gn [gp(w;,6,)'] QQZOI(G (g6 (w3, 05)]—2+/nG,, [gy(wy, O, )]Qq;jﬁo—i-nﬂ;(l;jﬁo—i-op(l).

(B.16)
Moreover, by the central limit theorem,
Gn [ge(wia 77ZJ0)] i) N(Ov Q¢o)
and
G [ge(wi, ¥0)] Q7' G [ge(wi, )] 5 X3
O

41



B.4 Proof of Corollary 41

By result @-3) in TheoremZ2we have that

1 e (0:) gy (wi 0)
flogQ(wlnw*aMl) + log(n nzlog <E ~(0) v (w; 0 )]>
+ (A(6.) — M(6.))Elgo(wi, 0,)] + Op(1/n). (B.17)

By LemmalC_1in the Online Appendix||A(6,) — A.(6,)]> 2 0. By the Law of Large Numbers
Ax(04) g (wi,04) » e+ (0+)" g6 (wi,0)
" Zlog ( ~(02)95(w;.0- )}) — B llog (E[ex*w*ygb(wm*)])] :

This concludes the proof.

B.5 Proof of Corollary 4.2

By result @-2) in TheorenZ=3we have that

~log (wn i, M) + log(n) = O,(1/n)

eA*(wo)’ Z?:1 gp(w;,%0)
E[ek*(wo), Zi:l gb(w]‘vwo>}

Since\.(v,) = 0 then, = 1 and so we can equivalently write:

1 R 1 n «(¥o) gp(wisths)
n log (w1 |te, M) + log(n n Zlog (E o (o) 95 (Wi s )] + Op(l/n)'

By the Law of Large Numbers
e (¥o) g (wi o) » e (¥o) g (wi o)
" Zlog NORZACTEDS] = E |log E[eM@o o 00] | |-

This concludes the proof.
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B.6 Proof of Theoremé&4

The proofis organised in two parts. In the first part we showlHiatP||Q%(v,)) < KL(P||Q;(6.))

if and only if there is nd such that&[s;(0)z;] = 0. In the second part we show that

P(lOg m(wlzn‘ME) > 1Ogm(w12n‘Mb)) - 1

if and only if KL(P||Q:(¢.)) < KL(P|Q;(6.)).

First part. We start by proving thaKL(P||Q%(v,)) < KL(P||Q;(0.)) if and only if there is
no @ such that[s;(0)z;] = 0. Notice thatKL(P||Q%(¢,)) = 0. Suppose thaKL(P||Q%(¢,)) <
KL(P||Q;(6.)) and suppose that there exist8 auch thatE[s;(0)x;] = 0 so thatP € Q4. By
AssumptionZ with 6, replaced byd, then thisf must be equal t@, which in turn equal¥,. It
follows that P € Q,,. and by definition ofQ; (6.): Q;(f.) = P since®;(0.) is the closest to
P, in the KL sense, among all the distributionsdh y,. Hence KL(P||Q;(6.)) = 0. But this
contradicts the assumption tHat.(P||Q*(v,)) < KL(P||Q5(0.)). Hence, there is né such that
Ele;(0)z;] = 0.

We now prove the reverse implication. Suppose that there is no #aueh thatE[s;(0)x;] =
0. Hence,P ¢ Q,, for everyf € © which impliesP ¢ Q.. andKL(P||Q;(f.)) > 0. On the
other hand, there exists a uniqye € R such that”? € Q... sinceP., is always correctly

specified. This implies thaL(P||Qz(v,)) = 0 and soKL(P||Q%(1,)) < KL(P||Q;(b.)).

Second part. We show thaf’ (log m(wy.,|M.) > log m(wy.,|M;)) — 1ifand only if KL(P||Q%(¢,))
< KL(P||Q;(6.)). By Theorem#&2 andd-3, and Theorem&=6 andC=7 in the Online Appendix
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and by E71)-(22), then @9)-(-10) hold. By @39), thelog m(w.,|M,) is equal to

—nlogn + Zlog

=1

<emwm%mma

E[eA*(e*)'gb(wj,e*)D +n(A(0.) = Au(6.)) Elgy(w;, 0.)] — glog(n) +0,(1)

and by E-T0), log m(wy.,|M.) = —nlog(n) — 2% log(n) + O,(1). Hence, since from the Law

of Large Numbers:

| A0S it \
E Z ]-Og (E[eA* (0+) Z?:l gb(wjve*)] ~ E

€>\* (0*)/ Z:’:l gb(’wi,@*) )
8 B[O S ) )| —KL(P||Q5(0.)),

it follows that

P (log m(wy.,| M.) > logm(wy.,|My)) = P (71z log m(wy.,| M) > Tlllog m(wlml./\/lb)>

— P (0> —KL(P||Q;(6.)) + Op(1/vn)) .

where we have used Lemniizl in the Online Appendix to control/n(A(6,) — A.(6,)). Sup-
pose thatKL(P||Q;(0.)) > 0 then the previous probability convergesitoOn the other hand,
suppose thaP (0 > —KL(P||Q;(0.)) + Op(1/y/n)) — 1 asn — oo. This is possible only if
KL(P||Q;(0.)) > 0. By the first part of the prooKL(P||Q;(6.)) > 0 if and only if there is n@
such thatE[s;(0)x;] = 0.

We now prove the last assertion of the theorem. In the case where therg isuah that
E[e;(6,)x;] = 0, thenKL(P||Q; () = 0 and the probability? (0 > —KL(P||Q;(0.)) + O,(1//n))

is equal to zero as — oco. This concludes the proof.
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B.7 Proof of Theoremé35

We start by supposing that|e;(6,)z;] = 0. In this casef. = 0., \.(6.) = \.(6,) = 0 and by
Theorem&2 and4=-3;

IOg Q(wlzn‘em Mb) - log q\(wlsn|wo> Me)

= —nlogn — -G lgs(wi,0.)] 25 G gy o, 6.)] + nlog

45 00)] 07" G (w1, 00)] + 0,(1) = 0,(1). (B.18)

Let my, (+|wiin, M) @ndmy, (-|wis,, M) denote the posterior density bf andh,, respectively.

By CorollaryC-1in the Online Appendix (which is valid iE[e; (0, )x;] = 0 holds)

n p 1 _
log i, (Vn(8 — o) fwin, M), =~ log(2m) + 7 log |V,

0=0,
1
- §Gn [e:(00) )] Q) E[w; ) ;| Ve, Bl wi]Q ' Gy, [e:(00)wi] + 0p(1)  (B.19)

and by Theorenc_7 in the Online Appendix

(p+d,)

1 _
IOg WZU,(\/E(%Z} - ¢o)‘w1:n7 Me) - = _T 10g(27T) + 5 IOg ‘Vd}oll

1 ~ -1 dge(wiawo), dQE(wi>¢o) -1 ~
- §Gn [e:(0o)wi] 2 [dw] Vi, l(wl] Q; G [gi(0o)wi] + 0,p(1), (B.20)

whereVy, andV,, are defined in CorollarfZ1 and TheorenfC7 in the Online Appendix. Hence,
by replacing B20), (B-T9) and B18) in log m(wy.,,| M) — log m(ws.,| M.) by using the expres-
sions for the log-marginal likelihoods given ia&T)-(E-2) with 6, replaced by, we obtain:

1
P (log m(wnn|My) > logm{uwi, | M.)) = P log w(0:|My) + & log(2m) - 2 log |V;.'|

1
+ iGn [e:(00)w}] Q) E[w;w} ;| Ve, Bl ;wi]Q ' Gy, [e4(00)w;] — glog(”)

(p+d,)
2

1
> log (¢, | M.) + log(2m) — 2 log ’ij’
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p+d,

+;Gn ECATAYS [dg(wiﬂ/’o)/] V. [dg(wm/)o)

o v ane, (ool

log(n)+op(1)>.

(B.21)

Becauses,, [e;(0.)wi] = Op(1), [V, '] = O(1) and|V, | = O(1) (sinceVj, andV,, are positive

definite under Assumptidd), then we can factorizleg(n) in (B=21) and get:

P(logm(wlzn|Mb) > logm(wl:n|Me)> -
1 T(o|Me) | dylog(2m) 1 Vol d

= (0> o800 i 198 TR0 * gty Ziogim Wl T 3
-, dg(w;, ¥ dg( wl, o) o, o,
+ 2log(n) G [ei(0o) ] Q. ([ ] Vo, [ ] E[wiwLi]‘/@oE[wl,iwi]>
x Q'G, [gi(eo)m]} +0,(1)) =P ( > log(n [ 1) — C;E] + op(1)> —1 (B.22)

asn — oo. This proves the first implication.

We now prove the reverse implication. Suppose thébg m(w.,|M,) > log m(wy.,|M.)) —

1. By (@.1)-(&-2):

P (log m(wy.,| M) > logm(wy.,| M.)) = P(log (0. My) + log G(w.,]0+, My)

- 1Og er (0|w1:n7 Mb) - glog(n) > logﬂ-(¢o|M6) + lOg q(wlzn’¢oa Me)

— log 7y, (Olwiin, Me) — u —;dx log(n)) (B.23)
By using Theorem&2 and4-3, we get:
10g G(wy:n 0., M) — log Gwynlth,, Me) = —A,QL(0.) 7' B,
e (0+)"gb(wi,0x)
+ Z IOg ( )\ (0+) gy (w;,0 > (9*)),E[gb<w17 6*)]
1

+ 56 [T (A 00 (i, 6 } G [7] (e 0.) g0 (w3, 0.)

G [9e(wi, 1)1 5 G [ge (w3, )] + 0,(1),  (B.24)
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whereA, := G, [rl(\., 0.)g,(wi, 0.)'] % N(0,08(6.)), By := Gy [go(wi, 0.)'] % N(0, Ele; (6. )] i)
andG,, [ge(w;, 1,)’] QJJGn [g9.(wi, ¥,)] % x2 and so they are bounded in probability. Moreover,
by the Law of Large Numbers:

e)\* (9* )’gb (wi ,9*)

2 0x (ot ) B DoslaQio.)/ap)] = 0,0/v),

whereE” [log(dQ; (0.)/dP)] = —KL(P||Q;(6.)), and by Lemm&2in the Online Appendix,
V(A(8) = A(8.)) Elgs (wi, 6.)] = =Gulr] (A, 0.)=i(0.) @O (6.) " Elgs (wi, 0.)] + 0p(1).

Therefore,

1Og q\(wlzn|9*y Mb) - log q\(wlzn|¢o7 Me)

= 0,(1) + 1 (0,(1/vn) = KL(P||Q}(6.))) + vVnO,(1) (B.25)

By replacing B=Z5) in (B223), and by using TheorenfS6 andC7 in the Online Appendix
to show thatlog 7, (0|w1., Mp) = O,(1) andlog 7y, (0wi.n, M) = O,(1), the expression in
(B23) is equal to:

P (log m(wy.,| My) > log m(wy.,|M.))

= P(0,(1)vi ~ nKL(P|Q1(6.)) > 0,(1) ~ © log(n))  (B.26)

whereO,(1)/n — nKL(P||Q;(6.)) in the left hand side convergestax if KL(P||Q;(6.)) >0
(since the term im is diverging faster than the term igin) while the term on the right hand side
also converges towardsoo. The inequality is then satisfied with probability approachingnly

if KL(P||Q5(0.)) = 0. This is equivalent to havE[e;(0,)x;] = 0 (by the first part of the proof of

Theoren-24) and we have proved the second part of the ‘if and only if’ statement.
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