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Abstract
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1 Introduction

Consider the semiparametric linear regression modely = x′β + z′
1γ + ε, wherey ∈ R is the

response,x ∈ Rdx is the treatment vector of interest,z1 ∈ Rdz1 is a vector of controls andε is

the idiosyncratic noise. A standard assumption in the Bayesian estimation of such models is that

the regressorsx are exogenous in the sense that they are uncorrelated with the error termε. In

many practical applications, however, this assumption is not satisfactory and is likely to be at odds

with the data. Provided one has a vector of valid instrumentsz2 ∈ Rdz2 , at least of the same

dimension asx, it is possible to develop a prior-posterior analysis of the parameters based on those

instruments, from both the parametric and semiparametric Bayesian viewpoints, see for example,

Drèze(1976), Kleibergen and van Dijk(1998), Chao and Phillips(1998), Kleibergen and Zivot

(2003), Hoogerheide, Kleibergen and van Dijk(2007), Schennach(2005), Liao and Jiang(2011),

Florens and Simoni(2012, 2016, 2021), Kato (2013), Shin(2014), and, of particular relevance to

the current paper,Chib, Shin and Simoni(2018).

A missing element in the existing Bayesian literature is a test for the exogeneity/endogeneity

of the regressors. To fill this gap, in this paper, we derive the first Bayesian test for the endogeneity

of regressors. This test is based on the marginal likelihoods of two models: a base model that

is defined by the moment conditionsE[ε(θ)x] = 0, E[ε(θ)z1] = 0 andE[ε(θ)z2] = 0, where

ε(θ) := (y−x′β+z′
1γ) andθ := (β, γ), and an extended model in which the exogeneity condition

of the base model is amended toE[ε(θ)x] = v. In the extended model,v is an additional parameter

that accounts for the covariance between the error andx. Analysis of each model is based on the

exponentially tilted empirical likelihood (ETEL), avoiding parametric distributional assumptions.

We use the Bayes factor of the extended model versus the base model to test whetherx is

endogenous. The Bayes factor is the ratio of the marginal likelihoods of the extended and base

models. We show that, with probability approaching one as the sample size increases, the Bayes

factor selects the base model if and only ifx is exogenous, and the extended model if and only ifx

is endogenous. These results are proven through a detailed large-sample analysis of the marginal

likelihoods of the two models. Starting from the expression of the log-marginal likelihood given by
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theChib (1995) identity - as the sum of the log ETEL, the log prior, and the negative log posterior

of the parameters, each evaluated at a particular point in the parameter space - we show that the

log-marginal likelihoods of each model are asymptotically proportional to the Kullback-Leibler

divergence between the true data distribution and the closest distribution satisfying the moment

restrictions, plus a BIC penalty term. We provide a new derivation of this penalty by expressing

the posterior ordinate of the parameters at the true or pseudo-true value, by a change of variable,

as the posterior ordinate of a local parameter. The log of the Jacobian of this transformation is

the penalty, while the ordinate of the posterior density of the local parameter at zero is bounded in

probability asn → ∞.

Model consistency of the Bayes factor arises because the first and third terms that characterize

the log-marginal likelihood behave differently depending on whetherx is endogenous or exoge-

nous. Whenx is exogenous, the average log-ETEL of the two models is asymptotically the same,

but the penalties differ. Whenx is endogenous, model consistency of the test is driven by the differ-

ing behaviors of the respective log-ETEL values, which dominate any difference in the penalties.

Thus, the difference in penalties asymptotically plays no role in this case.

Interestingly, the idea of comparing two models to detect endogeneity, one which is misspec-

ified under endogeneity and the other which is not, is similar in spirit to the frequentistHausman

(1978) test where the comparison is based on estimators (rather than models) that are inconsistent

and consistent under endogeneity. In this sense, the Bayes factor test we provide is a Bayesian

analogue of the Hausman test.

The rest of the paper is organized as follows. In Section2 we summarize in general terms the

Bayesian estimation and comparison of moment condition models using the exponentially tilted

empirical likelihood. In Section3 we present the base and extended models as well as finite-sample

results from a simulated data example to illustrate the implementation of our procedure. Section4

describes our test for endogeneity/exogeneity. Then, it analyses the large-sample behavior of the

log-marginal likelihood and establishes consistency of the testing procedure. A simulation exercise

is provided. Finally, in Section 5 we consider three examples using real data. Concluding remarks
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are given in Section 6. An appendix collects the proofs of the main results. Additional results and

their proofs are in the Supplementary Appendix.

2 Preliminaries

In this section we briefly provide the background on Bayesian estimation of moment condition

models using the exponentially tilted empirical likelihood (ETEL). Further details can be found in

Schennach(2005) andChib et al.(2018).

Consider a random vectorw ∈ Rd+1, a vector of parametersθ ∈ Θ ⊂ Rp with p = dx + dz1 ,

and letM denote the set of all probability distributions onRd. For a known functiong(w, θ) :

Rd+1 × Rp → Rd, let

EQ[g(w, θ)] = 0

denote a vector of moment conditions whereQ is an element of the subset of distributions

Qθ =
{
Q ∈ M : EQ[g(w, θ)] = 0

}
(2.1)

that satisfy the moment conditions for a givenθ ∈ Θ.

Suppose now that the dataw1:n := (w1, w2, . . . , wn) are independently drawn from the true

distributionP (that does not necessarily belong toQθ for someθ ∈ Θ). To find the empirical

counterpart ofQ ∈ Qθ, θ ∈ Θ, consider the discrete distribution{q̂i(θ)}ni=1, with support on

{wi, i = 1, . . . , n}, that is the nearest in the Kullback-Leibler (KL) discrepancy to the empirical

distribution that places probability mass{ 1
n
} on each observation. Enforcing the requirement that

the moment restrictions are satisfied under this discrete distribution, the probability masses emerge

as the solution to the optimization program

{q̂i(θ)} := arg max
q1,...,qn

n∑

i=1

[−qi log(nqi)]

subject to
n∑

i=1

qi =1, and
n∑

i=1

qig(wi, θ) = 0, ∀θ ∈ Θ. (2.2)
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The ETEL is the likelihood constructed from this discrete distribution. It is defined as

q̂(w1:n|θ) =
n∏

i=1

q̂i(θ)

and is the the joint density of the observations after integrating outQ with respect to a particular

nonparametric prior that imposes the moment restrictions for a givenθ ∈ Θ as demonstrated in

Schennach(2005). Let π(θ) denote the prior density of the parameters. Then, the ETEL-based

posterior distribution is given by the truncated distribution

πn(θ|w1:n) ∝ π(θ) q̂(w1:n|θ) I[θ ∈ H], (2.3)

whereI[A] denotes the indicator function, andH is the set ofθ for which the convex hull of
⋃n
i=1 g(wi, θ) contains zero. IfH is empty, there is no solution inθ to (2.2). The posterior

πn(θ|w1:n) is not available in closed form, but it can be summarized by tailored MCMC meth-

ods.

A convenient way to compute{q̂i(θ)} is from the dual of (2.2). If we let

λ̂(θ) ≡ λ̂(w1:n, θ) := arg min
λ∈Rd

1
n

n∑

i=1

exp (λ′g(wi, θ)) ,

then

q̂i(θ) =
eλ̂(θ)′g(wi,θ)

∑n
j=1 e

λ̂(θ)′g(wj ,θ)
, i ≤ n. (2.4)

The population counterpart of{q̂i(θ)} is the distributionQ∗(θ) ∈ Qθ that is closest toP in the

KL divergence. It is defined as

Q∗(θ) := arginfQ∈Qθ
KL(Q||P ),

whereKL(Q||P ) :=
∫

log
(
dQ
dP

)
dQ is the KL discrepancy ofQ from P if Q is absolutely con-

tinuous with respect toP and is equal to+∞, otherwise. The population counterpart ofλ̂(θ)
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is

λ∗(θ) := arg min
λ∈Rd

E[eλ
′g(wi,θ)].

If one or more moment conditions are misspecified, thenQ∗(θ) 6= P for any θ ∈ Θ and the

pseudo-true valueθ∗ is defined as the value ofθ that minimizes KL(P ||Q∗(θ)) overΘ. Notice the

inversion of the probabilities in theKL discrepancies used to defineQ∗(θ) andθ∗. Under correct

specification,Q∗(θ◦) = P , for someθ◦ ∈ Θ, andθ∗ = θ◦.

When the dual representation of the optimization problem (2.2) holds, the pseudo-true value

can also be obtained as

θ∗ = arg max
θ∈Θ

E log
(

eλ
′
∗(θ)g(w,θ)

E[eλ′
∗(θ)g(W,θ)]

)

, (2.5)

where in this case the term within the brackets is[dQ∗(θ)/dP ](w).

3 Models

In this section, we link the general setting presented in Section2 to the semiparametric linear

regression presented in Section 1. Letw := (y, x, z1, z2) ∈ Rd+1 follow the unknown probability

distributionP , whered := dx + dz1 + dz2 . Let E[∙] := EP [∙] denote the expectation with respect

to P . Now suppose that underP andθ◦ := (β◦, γ◦), w follows the regression model

y = β′
◦x+ γ′

◦z1 + ε, E[εi(θ◦)zj,i] = 0 for j = 1, 2, (3.1)

that is,zj,i, j = 1, 2 are exogenous vectors,z1 is a vector of controls andz2 is a vector of instru-

mental variables. Suppose that the intercept is contained inz1. The focus is on the causal effect of

x ony, captured by the parameterβ◦. Let

ε(θ) : = y − β′x− γ′z1

≡ y − θ′w̃ ,
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wherew̃1,i := (x, z1i), θ := (β, γ) ∈ Θ ⊂ Rp (p := dx+dz1). Under the assumption thatdz2 ≥ dx,

the instruments help to identifyβ◦ whenE[εi(θ◦)xi] 6= 0.

Base model: The base model is defined by the moment conditions

EQ[gb(w, θ)] = 0

where

gb(w, θ) := ε(θ)











x

z1

z2











andQ is an element of the subset of distributions:

Qb,θ =
{
Q ∈ M; EQ[gb(w, θ)] = 0

}
(3.2)

that satisfy the moment conditions for a givenθ ∈ Θ. The expectation is with respect to a distri-

butionQ ∈ Qb,θ (as opposed toP ) because, ifx is endogenous underP , there is noθ that satisfies

the moment conditions underP . That is,P /∈ Qb,θ. In this case, the ETEL function, constructed

from the samplew1:n, solves the empirical counterpart of the moment conditions:

EQ∗
b (θ)[gb(w, θ)] = 0

where, for everyθ,Q∗
b(θ) is the distribution in the setQb(θ) closest toP in the KL divergence, that

is,

Q∗
b(θ) := arginfQ∈Qb,θ

KL(Q‖P ).

In addition,

θ∗ = arg max
θ∈Θ

E log
(

eλ
′
∗(θ)gb(w,θ)

E[eλ′
∗(θ)gb(W,θ)]

)

(3.3)

denotes the pseudo-true value in the base model. On the other hand, ifx is exogenous, then
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Q∗
b(θ∗) = P andθ∗ = θ◦, whereθ◦ denotes the true value ofθ.

Extended model: We define the extended model by the moment conditions

EQ[ge(w,ψ)] = 0, Q ∈ Qe,ψ, (3.4)

where

ge(w,ψ) := ε(θ)











x

z1

z2











−











v

0

0











= gb(w, θ) −











v

0

0











,

ψ := (θ, v) ∈ Ψ, Ψ := Θ × V with V ⊂ Rdx , andQe,ψ :=
{
Q ∈ M; EQ[ge(w,ψ)] = 0

}
. In this

model,v := E[ε(θ)x] is the covariance between the error andx.

Note that the extended model is correctly specified under both endogeneity and exogeneity

of x. For instance, ifE[ε(θ)x] 6= 0 for everyθ ∈ Θ, while E[ε(θ◦)(z′
1, z

′
2)

′] = 0, thenv will

be equal toE[ε(θ◦)x], and (3.4) is satisfied for thisθ◦. In the following, we use the notation

v◦ = E[ε(θ◦)x]. Therefore, the minimizer,Q∗
e(ψ) = arginfQ∈Qb,θ

KL(Q‖P ), is equal toP , and the

population moment conditions in the extended model are

EP [ge(w,ψ◦)] = 0.

Moreover,

ψ◦ = arg max
ψ∈Ψ

E log

(
eλ

′
∗(ψ)ge(w,ψ)

E[eλ′
∗(ψ)ge(W,ψ)]

)

, (3.5)

whereλ∗(ψ) := arg minλ∈Rd E[eλ
′ge(w,ψ)].
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3.1 Numerical illustration

To illustrate the fitting of the base and extended models, consider first the base model under endo-

geneity. Let the DGP be

yi = γ0 + xi β + z1i γ1 + εi

xi = δ0 + z1i δ1 + z2i δ2 + ui

z1i = vi

z2i = ωi

for i = 1, . . . , n, wheren ∈ {250, 500, 1000, 2000}. Suppose that the(ui, vi, ωi) are marginally

Gaussian, thatεi is marginally a skewed Gaussian mixture0.5N (0.5, 0.52) + 0.5N (−0.5, 1.1182),

that(εi, ui, vi) have a joint distribution induced by a Gaussian copula with covariance matrixR =
( 1 0.6 0

0.6 1 0
0 0 1

)
and that the covariance ofωi with each of the other errors is zero. Also assume that

each parameter is one (except forδ1, which is .5). Under this DGP,z1i is uncorrelated withεi and

correlated withxi but sinceωi is uncorrelated with the other shocks,z2i is a valid instrument that is

also relevant forxi. For each of the four sample sizes, the posterior ofθ := (β, γ0, γ1) is calculated

from the four moments conditions

E
[
(yi − xi β − γ0 − z1i γ1)















xi

1

z1i

z2i















]
=















0

0

0

0















.

The ETEL posterior is sampled by the tailored one-block M-H algorithm (Chib and Greenberg,

1995) for 20000 iterations beyond a burn-in of a 1000 cycles. The marginal posterior density of

β for each sample size is computed from these MCMC sampled draws. Kernel smoothed versions

of the posterior densities are given in Figure1. As the sample size increases, the posterior con-

centrates on a value quite different from the true value ofβ. In the extended (correctly specified)
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Figure 1: Base model under neglected endogeneity: Marginal posterior densities ofβ for different
sample sizes. Posterior mean is indicated by dashed vertical line.

model we have

E
[
(yi − xi β − γ0 − z1i γ1)















xi

1

z1i

z2i















]
=















v

0

0

0















The parameter of interest is nowψ = (β, γ0, γ1, v). We use a default student-t prior onv centered

at the GMM estimate and spread given by 4 times the GMM asymptotic variance. The prior ofθ

is the same as in the base model. The ETEL posterior for each of the four different sample sizes

is sampled by the tailored one block M-H method for 20000 iteratations beyond a burn-in of 1000

cycles. The marginal posterior densities ofβ are given in Figure2 and those ofv are in Figure

3. One can see that the posterior ofβ, even forn = 250, is close to the true value ofβ, and,

for n = 2000, is essentially centered around the true value. In addition, the posterior ofv, the

cov(x, ε), tends to concentrate around the true value of 0.6.
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Figure 2: Extended model (xi moment is inactive): Marginal posterior densities ofβ for different
sample sizes. Posterior mean is indicated by dashed vertical line.

4 Testing procedure

4.1 Bayes factor

Our Bayesian test of endogeneity is given by the Bayes factor ofMe versusMb

BFeb =
m(w1:n|Me)
m(w1:n|Mb)

,

wherem(w1:n|Mb) :=
∫
q̂(w1:n|θ,Mb)π(θ)dθ andm(w1:n|Me) :=

∫
q̂(w1:n|ψ,Me)π(ψ)dψ are

the model marginal likelihoods arising from the ETEL functions (also called marginal ETEL func-

tions later on). We compute these by the method ofChib (1995), as extended to general M-H

chains inChib and Jeliazkov(2001). We selectMe over Mb if log(BFeb) > 0, and selectMb

otherwise.

According to the theory inChib et al.(2018), for valid comparisons of moment condition

models, the contending models must arise from a common encompassing model and should have
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Figure 3: Extended model under neglected endogeneity: Marginal posterior densities ofv =
cov(x, ε) for different sample sizes. Posterior mean is indicated by dashed vertical line.

the same number of moment conditions. We have ensured that this condition is met by including

theE[εi(θ)z2,i] = 0 restriction in the base model, and not excluding theE[εi(θ)xi] = v condition

from the extended model.

Intuitively, the Bayes factor picks the correct model becauseMb is correctly specified whenx

is exogenous and misspecified whenx is endogenous; however,Me is correctly specified in both

the cases. Therefore, fromChib et al.(2018), it follows thatMb, which has(d−p) overidentifying

restrictions, versusMe, which has(d − p − dx) overidentifying restrictions, would be preferred

by the Bayes factor whenx is exogenous (because it has more overidentifying restrictions than

Me), whereas,Me would be preferred whenx is endogenous (becauseMb in that case would be

misspecified).
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4.2 Understanding the marginal likelihood

In this section we explain the rational behind our testing procedure. The hypothesis that we want

to test is the following one:

Hmiss : P is such that@θ ∈ Rp such thatEP [εi(θ)xi] = 0

against

Hcs : P is such that∃θ ∈ Rp such thatEP [εi(θ)xi] = 0.

Here, the subscriptsmiss andcs are for misspecification and correct specification, respectively. We

notice that the previous hypothesis can equivalently be written asH ′
miss : v 6= 0 andH ′

cs : v = 0.

Our approach based on BFeb is equivalent to a Bayes test forH ′
miss versusH ′

cs based on a prior

on v of the typeπ0δ0(v) + (1 − π0)π(v), whereδ0(∙) denotes a Dirac mass on zero andπ(∙) is a

continuous distribution. The two Bayes factors for these two approaches are numerically the same.

The testing procedure works as follows: if BFeb ≥ 1 then acceptHmiss, if BFeb < 1 then accept

Hcs.

The next theorem shows thatHmiss andHcs can be expressed in terms of Kullback-Leibler

divergences betweenP and the setQb,θ of distributions that satisfy the moment restriction that we

want to test as well as additional moment restrictions that are known to hold forP .

Theorem 4.1 Suppose that there is aθ ∈ Θ such thatEP [εi(θ)(z′
1,iz

′
2,i)

′] = 0. Consider the

following statements:

(i). P is such that@θ ∈ Θ such thatEP [εi(θ)xi] = 0

(ii). KL(P ||Q∗
b(θ∗)) > 0

(iii). P is such that∃θ ∈ Θ such thatEP [εi(θ)xi] = 0

(iv). KL(P ||Q∗
b(θ∗)) = 0.

Then, (i) is equivalent to (ii) and (iii) is equivalent to (iv).
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This theorem makes clear that to testHmiss andHcs one can equivalently focus on the Kullback-

Leibler divergenceKL(P ||Q∗
b(θ∗)). Our Bayes test is based on Bayes factor and comparison of

marginal likelihoods. There is a strict link between marginal likelihood and the Kullback-Leibler

divergence: log-marginal likelihood of the base model behaves asymptotically as−nKL(P ||Q∗
b(θ∗))

plus a penalty term, where the penalty depends on the number of parameters to estimate, and sim-

ilarly for the log-marginal likelihood of the extended model. We are going to demonstrate this fact

in the rest of this section.

From theChib (1995) identity, we have for the base model:∀θ ∈ Θ ⊂ Rp,

logm(w1:n|Mb) = log π(θ|Mb) + log q̂(w1:n|θ,Mb) − log πn(θ|w1:n,Mb),

and similarly for the extended model. Because this identity is true for everyθ ∈ Θ, it is true for

θ = θ∗: logm(w1:n|Mb) = log π(θ∗|Mb) + log q̂(w1:n|θ∗,Mb) − log πn(θ∗|w1:n,Mb). Next, let

us introduce the local parametershθ :=
√
n(θ−θ∗) andhψ :=

√
n(ψ−ψ◦), so that by the formula

for transformation of random variables:πn(θ|w1:n,Mb) = πnhθ(
√
n(θ − θ∗)|w1:n,Mb)np/2 and

πn(ψ|w1:n,Me) = πnhψ(
√
n(ψ−ψ◦)|w1:n,Me)n(p+dx)/2, whereπnhθ(∙|w1:n,Mb) andπnhψ(∙|w1:n,Me)

denote the posterior density ofhθ andhψ respectively. By replacing this in the expression of the

marginal likelihoods we obtain:

logm(w1:n|Mb) = log π(θ|Mb) + log q̂(w1:n|θ,Mb) − log πnhθ(
√
n(θ − θ∗)|w1:n,Mb) −

p

2
log(n)

= log π(θ∗|Mb) + log q̂(w1:n|θ∗,Mb) − log πnhθ(0|w1:n,Mb) −
p

2
log(n),

(4.1)
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and

logm(w1:n|Me) = log π(ψ|Me) + log q̂(w1:n|ψ,Me)

− log πnhψ(
√
n(ψ − ψ◦)|w1:n,Me) −

p+ dx
2

log(n)

= log π(ψ◦|Me) + log q̂(w1:n|ψ◦,Me) − log πnhψ(0|w1:n,Me) −
p+ dx

2
log(n).

(4.2)

The intuition for expressing the posterior ofθ in terms of the posterior of the local parameter is that

the Jacobian of the transformation makes explicit the role played by the dimension of the model

while the local parameter has a posterior distribution that is approximately Gaussian. This is true

in both cases(i) and(iii) of Theorem4.1.

Therefore, the log-marginal likelihood is equal to the sum of two terms that are bounded in

probability asn → ∞ – these are the prior ofθ, or ψ, and the posterior of the local parameter–,

and two terms that are diverging withn: the log-ETEL and the term involving the dimension of the

model. Consequently, asymptotically the marginal likelihood behaves like a penalized log-ETEL

criterion where, remarkably, the penalization is coming from the prior distribution and is not ad-

hoc.

Of course, to be sure that a testing procedure based on marginal likelihood works, one has to

show thatπnhθ(
√
n(θ − θ∗)|w1:n,Mb) andπnhψ(

√
n(ψ − ψ◦)|w1:n,Me) are bounded in probability

asn → ∞ on the support of the prior. This can be quite challenging, in particular in non-standard

models like the one we are considering here where there is no parametric likelihood and where

models can be misspecified. We provide these results in TheoremsC.6andC.7in the Supplemen-

tary Material, which are refinements of Theorems 1 and 2 inChib et al.(2018). Compared to the

latter, we offer a new proof of the stochastic local asymptotic normality (LAN) of the log-ETEL

(see TheoremsC.1, C.2andC.3 in the Supplementary Material) that is more direct because it ex-

ploits the specific structure of the instrumental variable regression problem. Stochastic LAN is an

essential step to prove asymptotic normality of the posterior distribution of the local parameter.

The final step in order to have a clear comprehension of the marginal likelihood is provided by
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Theorems4.2and4.3below which supply an asymptotic expression for the log-ETEL in the base

and extended models. For simplicity, we recall the expressions of the log-ETEL function for one

observationwi:

log q̂i(θ|Mb) = log
eλ̂(θ)′gb(wi,θ)

∑n
k=1 e

λ̂(θ)′gb(wk,θ)
, log q̂i(ψ|Me) = log

eλ̂(ψ)′ge(wi,θ)

∑n
k=1 e

λ̂(ψ)′ge(wk,θ)

so that the log-ETEL functions arelog q̂(w1:n|θ,Mb) :=
∑n
i=1 log q̂i(θ|Mb) andlog q̂(w1:n|ψ,Me) :=

∑n
i=1 log q̂i(ψ|Me), respectively. The assumptions under which the following results hold are rel-

egated to section4.4 in order to facilitates readability and because they are standard assumptions.

Theorem 4.2 (Base model.)Let Assumptions1 - 4 and5 (d)-(f) hold. Then,

log q̂(w1:n|θ∗,Mb) = −n log n−Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn [gb(wi, θ∗)]

+
n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)

+ n(λ̂(θ∗) − λ∗(θ∗))
′E[gb(wi, θ∗)]

+
1
2
Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]
+ op(1), (4.3)

whereGn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]
d−→ N (0,Ω†

∗(θ∗)), τ
†
i (λ∗, θ∗) := [dQ∗(θ∗)/dP ](wi) andΩ†

∗(θ∗) :=

EQ
∗(θ∗)[εi(θ∗)2w̃iw̃

′
i].

For the extended model, we recall thatψ◦ = (θ′
◦, v

′
◦)

′ denotes the true value of the parameter

in the extended model withv◦ = E[ε(θ◦)x].

Theorem 4.3 (Extended model.)Let Assumptions2, 3 with Θ replaced byΨ, 4 and5 (d)-(f) with

θ∗ andλ∗(θ∗) replaced withθ◦ and0, respectively, hold. Then,

log q̂(w1:n|ψ◦,Me) = −n log n−
1
2
Gn [ge(wi, ψ◦)

′] Ω−1
ψ◦
Gn [ge(wi, ψ◦)] + op(1), (4.4)

whereΩψ◦
:= E[ge(wi, ψ◦)ge(wi, ψ◦)

′], andGn [ge(wi, ψ◦)
′] Ω−1

ψ◦
Gn [ge(wi, ψ◦)]

d−→ χ2
d, whereχ2

d

denotes a chi square distribution withd degrees of freedom.
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It is clear that ifE[εi(θ◦)xi] = 0, so that the assumptions in Theorem4.2hold withθ∗ replaced

by θ◦, then

log q̂(w1:n|θ◦,Mb) = −n log n−
1
2
Gn [gb(wi, θ◦)

′] Ω−1
◦ Gn [gb(wi, θ◦)] + op(1), (4.5)

whereΩ◦ = E[εi(θ◦)2w̃iw̃
′
i] becauseλ∗(θ∗) = λ∗(θ◦) = 0, and moreoverGn [g(wi, θ◦)′] Ω−1

◦ Gn [g(wi, θ◦)]
d−→

χ2
d, whereχ2

d denotes a chi square distribution withd degrees of freedom. Similarly, ifE[εi(θ◦)xi] =

0, then

log q̂(w1:n|ψ◦,Me) = −n log n−
1
2
Gn [gb(wi, θ◦)

′] Ω−1
◦ Gn [gb(wi, θ◦)] + op(1) (4.6)

andGn [gb(wi, ψ◦)
′] Ω−1

ψ◦
Gn [gb(wi, ψ◦)]

d−→ χ2
d. Hence, whenx is exogenous,log q̂(w1:n|θ◦,Mb)

andlog q̂(w1:n|ψ◦,Me) are equal asymptotically and they cancel in the comparison of the marginal

likelihoods.

In case of endogeneity, instead,log q̂(w1:n|θ◦,Mb) and log q̂(w1:n|ψ◦,Me) are different and

they play a central role in the comparison of marginal likelihoods. In this case, it is important

to consider the behaviour of the average log-ETEL function. We then have the following two

corollaries which are useful to relate the asymptotic behaviour of the average log-ETEL function

to the Kullback-Leibler divergence. We point out that, while this type of results is implicit in the

definition of the ETEL, we provide here a formal proof. In our setting, it is important to explicit

these results because they allow us to understand the behaviour of the marginal likelihood.

Corollary 4.1 (Base model.)Suppose Assumptions1 - 4 and5 (d)-(f) hold. Then, asn → ∞,

1
n

log q̂(w1:n|θ∗,Mb) + log(n)
p
−→ EP [log(dQ∗

b(θ∗)/dP )] , (4.7)

whereEP [log(dQ∗
b(θ∗)/dP )] = EP

[

log
(

eλ∗(θ∗)′gb(w,θ∗)

E[eλ∗(θ∗)′gb(w,θ∗)]

)]

= −KL(P ||Q∗
b(θ∗)).

Corollary 4.2 (Extended model.) Suppose Assumptions2, 3 with Θ replaced byΨ, 4 and5 (d)-(f)
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with θ∗ andλ∗(θ∗) replaced withθ◦ and0, respectively, hold. Then, asn → ∞,

1
n

log q̂(w1:n|ψ◦,Me) + log(n)
p
−→ EP [log(dQ∗

e(ψ◦)/dP )] , (4.8)

whereEP [log(dQ∗
e(ψ◦)/dP )] = EP

[

log
(

eλ∗(ψ◦)′g(w,ψ◦)

E[eλ∗(ψ◦)′g(w,ψ◦)]

)]

= KL(P ||Q∗
e(ψ◦)).

Notice thatEP [log(dQ∗
e(ψ◦)/dP )] = 0 since the extended model is correctly specified and so

dQ∗
e(ψ◦)/dP = 1.

From Theorems4.2 and 4.3, and TheoremsC.6 and C.7 in the Online Appendix and from

(4.1)-(4.2), then there exists anN such that for everyn > N :

logm(w1:n|Mb) = −n log n+
n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)

+n(λ̂(θ∗) − λ∗(θ∗))
′E[gb(wi, θ∗)] −

p

2
log(n), (4.9)

logm(w1:n|Me) = −n log(n) −
p+ dx

2
log(n). (4.10)

From these expressions, one sees that when the models are both correctly specified, that is,E[εi(θ◦)xi] =

0, thenλ∗(θ∗) = 0 and
∑n
i=1 log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj,θ∗)]

)

= 0 for everyn ∈ N. Therefore, it is clear that

asymptoticallylogm(w1:n|Mb) is larger thanlogm(w1:n|Me).

On the other hand, when there is noθ ∈ Θ such thatE[εi(θ)xi] = 0, thenλ∗(θ∗) 6= 0 and
∑n
i=1 log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj,θ∗)]

)

diverges to−∞ faster than the last two terms in (4.9), so that asymp-

totically logm(w1:n|Mb) is smaller thanlogm(w1:n|Me). This is the main intuition of the con-

sistency results in Theorems4.4and4.5 in the next section. The proof of these theorems is more

complicated than this arguments because the theorems provide an if and only if statement which is

stronger than consistency.
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4.3 Consistency of the testing procedure

We now use the preceding theory to establish consistency of our testing procedure based on the

Bayes factor constructed from the marginal ETEL functions. The theorems below establish that,

as the sample size increases,BFeb selectsMb if and only if x is exogenous, and selectsMe if and

only if x is endogenous, with probability approaching one.

Theorem 4.4 Let Assumptions1, 2, 4, 6, 7 hold and let Assumptions3 and 5 hold for θ∗ and

λ∗(θ∗) and also forθ∗ andλ∗(θ∗) replaced withθ◦ and0, respectively. Let the priors onθ andψ

be continuous probability measures that admit densities with respect to the Lebesgue measure and

that are positive on a neighborhood ofθ∗ andψ◦, respectively. Let us consider the comparison of

modelsMb andMe. Then,

lim
n→∞

P (logm(w1:n|Me) > logm(w1:n|Mb)) = 1

if and only if there is noθ such thatE[εi(θ)xi] = 0 holds, and the limit is zero otherwise.

As we show in the proof, the failure of the necessary and sufficient conditionE[εi(θ)xi] = 0 for

anyθ, is equivalent to the inequality KL(P ||Q∗
e(ψ)) < KL(P ||Q∗

b(θ)), where KL(P ||Q∗
e(ψ◦)) = 0.

Thus, as in the general result inChib et al.(2018, Theorem 3.2) for moment condition models,

comparing the log marginal likelihoods of the base and extended models, and selecting the one

with the higher value, in the limit, selects the model that is closest in the KL divergence to the

true model. In the framework of the present paper, this means that the correctly specified model is

selected.

Next, we show what happens when the variablesxi are exogenous so that the moment re-

strictionE[εi(θ)xi] = 0 holds for a particular valueθ◦ and the two models under comparison are

correctly specified. The next theorem states that in this case the base model is selected. This

is understandable through an argument of parsimony: the base model has the smaller number of

parameters to estimate and so it is the preferred one when it is correctly specified.
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Theorem 4.5 Let Assumptions1, 2, 4, 6, 7 hold and let Assumptions3 and5 hold for bothθ∗ and

λ∗(θ∗) and also forθ∗ andλ∗(θ∗) replaced withθ◦ and0, respectively. Let the priors onθ andψ

be continuous probability measures that admit densities with respect to the Lebesgue measure and

that are positive on a neighborhood ofθ∗ andψ◦, respectively. Let us consider the comparison of

modelsMb andMe. Then,

lim
n→∞

P (logm(w1:n|Mb) > logm(w1:n|Me)) = 1

if and only if there is aθ◦ such thatE[εi(θ◦)xi] = 0 holds.

Discussion. In this and previous subsection, we demonstrate that our model selection criteria

favor a model with a smaller Kullback-Leibler Information Criterion (KLIC). When two models

share the same KLIC, our procedure opts for the model with a greater number of restrictions, i.e., a

more parsimonious or less flexible model. Interestingly, this aligns with the goal ofSin and White

(1996)’s penalized likelihood criteria for a parametric model. Consequently, our proposed model

selection procedure in this paper andChib et al.(2018) can be viewed as a fully Bayesian semi-

parametric version of consistent model selection criteria, applied specifically to an endogeneity

testing problem. Unlike other frequentist procedures, the ‘penalty’ term required for consistency

is inherently built into our Bayesian calculation.

Andrews(1999), Andrews and Lu(2001), andHong, Preston and Shum(2003) have proposed

and studied model selection criteria for moment condition models, even though a formal likeli-

hood function is not defined. These criteria involve a penalization term that is attached to the

Generalized Method of Moments (GMM), and more broadly, the Generalized Empirical Likeli-

hood (GEL) objective function, rather than the likelihood function. Examples of such frequentists

model selection approaches based on GMM estimation can be found in AppendixA. However, the

relationship between these model selection criteria and the KLIC minimization principle ofSin

and White(1996) for potentially misspecified parametric models is not immediately apparent.

It is noteworthy that our procedure exhibits the same asymptotic behavior asHong and Pre-
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ston (2012)’s generalized empirical likelihood Bayes factor. They impose a separate prior on the

Lagrangian multiplier that is independent ofθ, which does not guarantee the imposition of mo-

ment restrictions. In contrast, we introduce an additional parameterv to the ‘inactive’ moment

restriction, ensuring that our prior onθ andv respects the moment restrictions.

4.4 Assumptions

We provide the assumptions that we use to prove the results in the previous sections. The first

assumption guarantees that the dual representation of the optimization problem (2.2) holds even

whenP /∈ Qb,θ for everyθ ∈ Θ. In fact, in the latter case it is possible thatQ∗
b(θ) andP do not

have a common support for anyθ, in which case, the equality in (2.4) does not hold, seeSueishi

(2013) for a discussion on this point.

Assumption 1 (Non-emptyness.)WhenEP [εi(θ)xi] 6= 0 for everyθ ∈ Θ, there existsQ ∈
⋃
θ∈Θ Qb,θ such thatQ is mutually absolutely continuous with respect toP , whereQb,θ is defined

in (3.2).

This assumption implies that there is aθ for whichQb,θ is non-empty, thatdQ∗
b(θ)/dP =

(
eλ∗(θ)′g(w,θ)

E[eλ∗(θ)′g(w,θ)]

)

and thatθ∗ is identified by (3.3). We then assume thatθ∗ is unique.

Assumption 2 (Identification.) The maximizerθ∗ defined as the minimizer ofKL(P ||Q∗(θ)) with

respect toθ ∈ Θ is unique and is in the interior ofΘ, where the interior is defined with respect to

the topology inRp.

Since under Assumption1 θ∗ coincides with the minimizer in (3.3), then the previous assump-

tion implies uniqueness also of the latter. The next three assumptions concern the model. Recall

the notationwi := (yi, x′
i, z

′
i)

′, zi := (z′
1,i, z

′
2,i)

′ and w̃1,i := (x′
i, z

′
1,i)

′. Moreover, we denote

w̃i := (x′
i, z

′
i)

′, ‖ ∙ ‖2 the Euclidean norm and‖ ∙ ‖F the Frobenius norm.

Assumption 3 (a)wi, i = 1, . . . , n are i.i.d. observable random variables each one taking values

in a complete probability space(W ,BW , P ), whereW ⊆ Rd+1,BW is the associatedσ-field and
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P is a probability distribution satisfying model(3.1); (b) Θ ⊂ Rp is compact and connected; (c)

for everyλ in a neighborhood ofλ∗(θ∗), the matrixE[eλ
′w̃iεi(θ∗)εi(θ∗)2w̃iw̃

′
i] has smallest (resp.

largest) eigenvalue bounded away from zero (resp. infinity).

Assumption 4 (a) E[w̃iw̃′
1,i] < ∞ with rankp.

Assumptions3 and4 are standard in the literature, seee.g. Schennach(2007). The following

assumption instead, is new and it is used to prove the approximation for the marginal likelihood.

We denote byw̃i,k the k-th component ofw̃i. Moreover, for anyδ > 0 and for some constant

C > 0 we denote byBδ(λ∗(θ∗)) := {λ ∈ Rd; ‖λ − λ∗(θ∗)‖2 ≤ Cδ} (resp. Bδ(θ∗) := {θ ∈

Rp; ‖θ − θ∗‖2 ≤ Cδ}) a closed ball centered aroundλ∗(θ∗) (resp.θ∗) with radiusδ, where‖ ∙ ‖2

denotes the Euclidean norm.

Assumption 5 (a) For anyδ > 0 and everywi, there is a functionγ0(wi) such that
∥
∥
∥eλ

′w̃iεi(θ∗)w̃iεi(θ∗)
∥
∥
∥

2

≤ γ0(wi) for everyλ ∈ Bδ(λ∗(θ∗)) and everyθ ∈ Bδ(θ∗), and E[γ0(wi)] < ∞; (b) for any

δ > 0 and everywi, there exists a functionγ1(wi) such that
∣
∣
∣eλ

′w̃iεi(θ∗)
∣
∣
∣ ≤ γ1(wi) for every

λ ∈ Bδ(λ∗(θ∗)), everyθ ∈ Bδ(θ∗) andE[γ1(wi)] < ∞; (c) for j, `, `′ = 1, 2, for anyk = 1, . . . , k

and everyδ > 0 there exists a functionγ2(wi) such that
∣
∣
∣eλ

′w̃iεi(θ∗)εi(θ)j−1w̃`i,k(h
′w̃1,i)`

′
∣
∣
∣ ≤ γ2(wi)

for everyλ ∈ Bδ(λ∗(θ∗)), everywi, everyθ ∈ Bδ(θ∗) and everyh in a compact set, and

E[γ2(wi)] < ∞; (d) the following operator norm

E

[

sup
λ∈Bδ(λ∗(θ∗))

∥
∥
∥e(`−2)λ′w̃iεi(θ∗)εi(θ∗)

`w̃`−2
i,k w̃iw̃

′
i

∥
∥
∥

]

is bounded away from infinity for everyk = 1, . . . , d, anyδ > 0 and for` = 3, 4;

(e) for anyδ > 0, E
[
supλ∈Bδ(λ∗(θ∗)) e

2λ′w̃iεi(θ∗)εi(θ∗)2 ‖w̃i‖
2
2

]
< ∞; (f) for everyj, k = 1, . . . , d

and everyδ > 0 there exists a functionbj,k(wi) such that
∣
∣
∣eλ

′gi(wi,θ∗)w̃i,jw̃i,kεi(θ∗)2
∣
∣
∣ ≤ bj,k(wi)

for everyλ ∈ Bδ(λ∗(θ∗)) andE[bj,k(wi)] < ∞; (g) for any j, k = 1, . . . , k, everywi, and every

δ > 0 there exists a functionγ3(wi) such that
∣
∣
∣eλ

′w̃iεi(θ∗)εi(θ)w̃i,kw̃i,jh′w̃1,i

∣
∣
∣ ≤ γ3(wi) for every

λ ∈ Bδ(λ∗(θ∗)), everyθ ∈ Bδ(θ∗) and everyh in a compact set, andE[γ3(wi)] < ∞.
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For the next assumption denote byΘn := {‖θ − θ∗‖ ≤ Mn/
√
n}, a ball aroundθ∗ with radius

at mostMn/
√
n, whereMn is any sequence of positive constants diverging to+∞. We denote

by `n,θ(wi) the log-likelihood function for one observationwi: `n,θ(wi) := log q̂i(θ|Mb) and by

`n,θ(w1:n) :=
∑n
i=1 `n,θ(wi) = log q̂(w1:n|θ,Mb) the log-ETEL function. The next assumption

controls the behaviour of the ETEL functionθ 7→ `n,θ(wi) at a distance fromθ∗ and it ensures that

θ∗ is well-separated from theθs that are at a certain distance from it.

Assumption 6 (Base model.)Assume that there exists a constantC > 0 such that

P

(

sup
θ∈Θcn

1
n

n∑

i=1

(`n,θ(wi) − `n,θ∗(wi)) ≤ −
CM 2

n

n

)

→ 1 , asn → ∞, (4.11)

whereMn is the same sequence used to defineΘn.

A condition similar to Assumption6 is in Kleijn and van der Vaart(2012, Lemma 4.2) and it

is also related to the classical condition ine.g. Lehmann and Casella(1998, Assumption 6.B.3)

andChernozhukov and Hong(2003, Assumption 3). To better understand the meaning of this

assumption, note that asymptotically the log-ETEL function is maximized at the pseudo-true value

θ∗. Hence, Assumption (4.11) requires that if the parameterθ is far from the pseudo-true value

θ∗, that is‖θ − θ∗‖ > Mn/
√
n, then

∑n
i=1 `n,θ(wi) evaluated at suchθ has to be small relative to

the close to the maximum value
∑n
i=1 `n,θ∗(wi). Controlling this behavior is important because the

posterior involves integration over the whole support ofθ. Subsets ofΘ that can be distinguished

from θ∗ uniformly (with probability approaching1 asn → ∞) based on the ETEL function will

receive a posterior probability that is asymptotically negligible. An alternative to this condition

would be to require the existence of asymptotically consistent testsφn that are able to distinguish

from the true distributionP in a uniform way, that is, for everyε > 0 there exists a sequence of

tests{φn} such that asn → 0,

E[φn] → 0, and sup
{θ;‖θ−θ∗‖≥ε}

E
[
e`n,θ(wi)−`n,θ∗ (wi)(1 − φn)

]
→ 0. (4.12)
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Similarly, for the extended model we denote by`n,ψ(wi) the log-likelihood function for one obser-

vationwi: `n,ψ(wi) := log q̂i(ψ|Me) and by`n,ψ(w1:n) :=
∑n
i=1 `n,ψ(wi) = log q̂(w1:n|ψ,Me) the

log-ETEL function. The next assumption has the same interpretation of Assumption6 but for the

extended model.

Assumption 7 (Extended model.)Assume that there exists a constantC > 0 such that asn →

∞,

P

(

sup
‖ψ−ψ◦‖>Mn/

√
n

1
n

n∑

i=1

(
`n,ψ(wi) − `n,ψ◦

(wi)
)

≤ −
CM 2

n

n

)

→ 1, (4.13)

whereMn is any sequence of positive constants diverging to infinity.

4.5 Experiments

Consider the same generating process as Example 1, and suppose that(εi, ui, vi) have a joint

distribution induced by a Gaussian copula with covariance matrixR =
(

1 ρ 0
ρ 1 0
0 0 1

)

. The parameter

ρ controls the degree of endogeneity. We letρ take values in the set from -.5 to .5, in increments

of 0.1. For each value ofρ in this set, we generate 100 samples of sizen. For each sample, we

compute the the base and extended models, and calculate the log-marginal likelihoods. We then

count the number of times the log marginal likelihood ofMe exceeds that ofMb. The results are

given Table1. We can see from this table that even for small values ofρ, our test of endogeneity

correctly concludes that the correct model isMe.

ρ -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.40.5

n = 250 99 96 82 48 12 2 18 54 93 100 100
n = 500 100 100 98 76 17 1 29 87 99 100 100
n = 1000 100 100 100 96 46 1 46 100 100 100 100
n = 2000 100 100 100 100 80 1 70 100 100 100100

Table 1: Model selection frequencies from 100 replications of data simulated from the design in
Example 1. For each combination ofn andCov(ε, u) = ρ, the entries give the number of times
in 100 replications of the data that the log-marginal likelihood ofMe exceeds the log-marginal
likelihood ofMb.
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5 Real data examples

5.1 Causal effect of price on automobile demand

We consider the classic problem of automobile demand dealt inBerry, Levinsohn and Pakes(1995).

This problem has recently been revisited byChernozhukov, Hansen and Spindler(2015), hence-

forth BLP and CHS, respectively. Apart from its intrinsic value, this problem is worth analyzing

because it involves a realistically large number of controls and instruments.

To set up the problem, letyijt denote the log of the ratio of the market share of producti

in marketj at time t, relative to an external option, and letxijt denote the potentially endoge-

nous automobile price variable. In the sample data, this variable is demeaned. For controls,

let zijt denote the observed characteristics of the product. In BLP these are taken to be a con-

stant, an air conditioning dummy (air), horsepower divided by weight (hpwt), miles per dol-

lar (mpd), and vehicle size (space). In our notation,yijt = xijt β + z′
1ijtγ + εi, wherez1ijt =

(1,mpdijt, spaceijt, hpwtijt, airijt). BLP used ten instruments, five formed by summing the value

of these five characteristics over other automobiles produced by the same firm and five formed by

summing the above characteristics over automobiles produced by other firms. These formz2ijt. In

revisiting this analysis, CHS augment the original controls with quadratics, and cubics intrend,

mpd, space, hpwt, and all first order interactions, and then used sums of these characteristics as

potential instruments.

In our analysis, we consider both formulations, but in the augmented variant we introduce non-

linear controls by transforming each oftrend, hpwt, mpd andspace by natural cubic spline basis

functions, each centered at five equally spaced quantile knots (the cubic spline basis functions are

taken fromChib and Greenberg(2010)). We opt for this approach to avoid widely different co-

variate values from parametric quadratic and cubic terms of these covariates. After the imposition

of an identification restriction on the basis expansions, which reduces the number of nonlinear

terms to four for each continuous covariate, the RHS of the augmented outcome model is defined

by x (price) andz1 (consisting of an intercept, sixteen nonlinear covariates, denoted bytrendBj,
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mpdBj, spaceBj andhpwtBj, for j = 1, . . . , 4, and the air-conditioning dummy). The set of

augmented instruments that formz2 in this augmented model are then constructed as in BLP.

We fit four models to these data: the base and extended models under the controls and in-

struments in BLP, and the base and extended models under the augmented set of controls and

instruments. In the BLP version, the base and extended models contain six and seven parameters,

respectively, and ten instruments, while in the augmented variant, the base and extended models

have nineteen and twenty parameters, and53 moment restrictions. We assume that then = 2217

observations on(yijt, xijt, z1ijt) are a random sample from the population of automobile products

across markets and time. Because it is difficult to formulate priors on the parameters by a priori

considerations, we randomly select15% of the sample to make training sample priors. In particu-

lar, we used the GMM estimate and its standard error fitted on the training data (model by model)

as the prior mean and twice the GMM standard error as the prior standard deviation. The ETEL

is constructed from the remaining data and the posterior distribution of each model is sampled by

the single block M-H algorithm ofChib and Greenberg(1995). This algorithm is fast and effi-

cient despite the relatively large numbers of parameters and instruments. The results show that

the posterior mean of the coefficient onprice is -0.14, and the 95% posterior credibility interval

is (-.16,-.13). The posterior mean is larger in magnitude than the OLS estimate originally reported

by BLP. Note that the posterior distribution of the covariance parameter,v, is concentrated to the

right of zero, indicating that theprice is likely endogenous.

For confirmation, we turn to our formal test of endogeneity. The results are reported in Table

2. We can see that the marginal likelihood is larger for the extended models in both the original

BLP and the augmented BLP specifications, supporting the conclusion that price is endogenous.

We conclude this analysis by plotting the posterior distributions of the price coefficient from

each model. The estimated effect of price on automobile demand is larger (in absolute value)

when endogeneity of price is taken into account. Interestingly, the price effect is smaller and more

concentrated in the augmented models, suggesting that some of the excess sensitivity to price

observed in the orginal BLP model is due to the omission of the nonlinear controls. In addition, it
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Original BLP (Linear) Augmented BLP(Nonlinear)
Base model (price is exogenous) -14386.81 -14431.86
Extended model (price is endogenous) -14364.59 -14397.67

Table 2: Results from the proposed Bayesian test of endogeneity. The log marginal likelihoods for
the base and extended models under the original BLP model and its augmented variant. Results
based on a training sample prior (using randomly selected 15% of the data) and 10,000 MCMC
iterations (beyond a burn-in of 1000) of a tailored single block M-H algorithm. Logarithm of
marginal likelihoods are computed by the method ofChib (1995) andChib and Jeliazkov(2001).

is worth noting that if we were to only fit the base model (which the marginal likelihood confirms

is misspecified in this case) we would miss the fact that incorporating nonlinearities impacts the

posterior distribution.

Figure 4: BLP models: Marginal posterior distributions of the coefficient on the price variable,
β. Posterior mean and standard deviation ofβ are -0.089 and 0.004 for the base model with
the original BLP (linear) specification while they are -0.087 and 0.004 with the augmented BLP
(nonlinear) specification. For the extended model, posterior mean and standard deviation ofβ are
-0.183 and 0.015 for the linear specification and -0.143 and 0.009 for the nonlinear specification.

5.2 Effect of airfares on passenger traffic

The emphasis of the theory and applications in this paper is on situations with a single outcome

variable, however, our framework can be applied more broadly. An important example is clustered,

longitudinal data. Letyi = (yi1, . . . , yiT ) denoteT potentially correlated and heteroskedastic
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measurements on subjecti. The outcome is thus aT × 1 vector, rather than a scalar. Adjusting

the dimensions of the controls and instruments, respectively, suppose that independently acrossi,

the clustered outcomes follow the linear modelyi = Xiβ + Z1,iγ + εi, whereXi is T × dx, Z1,i is

T × dz1 , Z2,i is T × dz2 , andεi is T × 1. Now assume thatZ1,i andZ2,i satisfy the clustered data

exogeneity restrictionsE[Z ′
j,iεi(θ)] = 0, j = 1, 2, but that the clustered data exogeneity restrictions

E[X ′
iεi(θ)] = 0 related toXi are in doubt. We can apply our framework to this problem by defining

a base model in which the latter restrictions are imposed, and an extended model that contains the

inactive restrictionsE[X ′
iεi(θ)] = v, wherev is now adx × 1 vector of unknown parameters. In

parallel to the approach developed above, the marginal likelihood comparison of these models is a

test for the exogeneity ofX.

As an illustration of this extended set-up, we consider aT = 4 balanced longitudinal data

set on airfares and passenger traffic for the years 1997, 1998, 1999, and 2000 fromWooldridge

(2010). For each yeart, t ≤ 4, the data is clustered by routei, i ≤ n = 1149. For each flight route

defined by the origin and destination cities, one has the log of the average number of passengers

per day (lpassen), the log of the average one-way fare in dollars (lfare), the log of the distance in

miles (ldist), and the fraction of the market corralled by the biggest carrier (concen). The model

of interest islpassenit = β lfareit + γ1trendt + γ2ldistit + εit, wheretrend is a trend variable

taking values1, 2, 3, 4, and each of the variables in this regression is mean centered. The goal is to

estimate the price elasticity parameterβ, but one is concerned thatlfare is possibly endogenous.

In the estimation we assume thatconcen is a valid instrument (it does not directly appear in the

outcome model and it affectslfare, both reasonable assumptions).

Clustered by routei, we have















lpasseni1

lpasseni2

lpasseni3

lpasseni4















=















lfarei1 1 ldisti1

lfarei2 2 ldisti2

lfarei3 3 ldisti3

lfarei4 4 ldisti4

























β

γ1

γ2











+















εi1

εi2

εi3

εi4















,
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or compactly asyi = W̃1,iθ + εi, i = 1, 2, . . . , 1149, whereθ : 7 × 1 is the unknown parameter of

interest. In this model, the distribution ofεi is not specified. Moreover, the elements ofεi can be

serially correlated and heteroskedastic in an arbitrary, unknown way.

Now letZi :=
(
W̃1,i, 1, conceni

)
, i ≤ n, be a4 × 5 matrix, where1 is a vector of ones, and

conceni = (conceni1, . . . , conceni4)
′ : 4 × 1 is the vector ofconcen values for routei. In the base

model,lfare is exogenous. The model is defined by the five moments

Mb : E[Z ′
i(yi −Xiθ)] = 05×1

In the extended model, thelfare moment condition is inactive. Specifically,

Me : E[Z ′
i(yi −Xiθ)] =







v

04×1







The ETEL-based estimation of these two models makes no assumption about the joint distribution

of the cluster-level errors.

We specify the prior from a training sample. We randomly split the sample into a training

sample (of say 115 clusters, equal to 10% of the total clusters) and an estimation sample (consisting

of the remaining 1034 clusters). We then estimate the base mode on the training sample with a

student-t prior centered on the system wide 2SLS estimate from the training data, sd of 10 and 2.5

degrees of freedom. The posterior mean and sd is calculated from these training data under this

prior. We then take the posterior mean and twice the sd from the training sample fit as the mean

and sd of the prior. This determination of the prior from the training sample is helpful in the fitting,

but, due to the thick tails of the prior, the information brought in by the prior pales in comparison

with the information from the estimation sample.

We sample the posterior in each model by the one-block tailored MCMC algorithm. In the

base model, from 10,000 MCMC draws beyond a burn-in of 1000, we find that the posterior mean

of β is -0.551 and its 95% posterior credibility interval is (-0.683, -0.419). Moreover, computation
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shows thatlog(m(w1:n|Mb) = −7190.222 and log(m(w1:n|Me) = −7191.06, signalling that

lprice in this problem can be viewed as exogenous.

6 Concluding remarks

This paper has developed a Bayesian test for exogeneity/endogeneity of the treatment vector of

interest in a linear mean regression model. This endogeneity problem is generally assumed away

in the Bayesian literature, but this leads to a serious misspecification problem since endogeneity, in

practice, is the rule, rather than the exception. In order to avoid the risk of distributional misspeci-

fication, the framework we have developed relies only on moment restrictions. The analysis in the

paper revolves around the study of two models: the base model, where the exogeneity assumption

is enforced, and an extended model, where the exogeneity moment is included but is made inactive.

The testing procedure for exogeneity/endogeneity is based on Bayes factor where the marginal

ETEL of the base and the extended models are compared. The procedure is validated from a fre-

quentist point of view because we establish the large sample consistency of the Bayes factor test.

In addition, we provide a comprehensive study of the log-marginal ETEL function and determine

which parts of it plays a role in the testing procedure depending on whether the covariatesx are

exogenous or endogenous.

The real-data examples discussed in the paper showcase the practical relevance of the methods.

It is important to mention that the approach proposed here can be extended to situations where

the controls are assumed to enter the model nonparameterically. While the finite sample analysis of

such models, after approximating the unknown functions by (say) spline basis expansion methods,

would proceed in much the same way as discussed in this paper, the specification of the prior and

the large sample analysis would require new developments to account for a growing number of

basis function parameters with sample size. We intend to describe the theory in a future paper.
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Online Appendix

A Comparison with GMM-based criteria

There are frequentist approaches to the model (or, moment) selection that can be applied in our

context. Andrews(1999) develops a class of moment selection criteria (MSC). Below are some

popular criteria that fall into the class:

GMM-BIC = Jn(c) − (|c| − p) ln n

GMM-AIC = Jn(c) − 2(|c| − p)

GMM-HQIC = Jn(c) − 2.01(|c| − p) ln ln n,

(A.1)

wherec is a moment selection vector,|c| is the number of moment conditions selected byc. p is the

number of parameters to be estimated,Jn(c) is theJ test statistic for over-identifying restrictions

constructed usingc with the optimal weighting matrix. Similar to the traditional BIC, these criteria

penalize model complexity based on the number of parameters and the number of restrictions

imposed. The model complexity increases when the number of parameters increases or the number

of restrictions decreases. This idea was extended byHong et al.(2003) to GEL estimation.

We have revisited our simulation exercise, originally presented in the main text (Table3),

and now report results based on other Frequentist methods: GMM-BIC, GMM-AIC, and GMM-

HQIC. From the table, several points can be made. First, all methods exhibit model selection

consistency, meaning the probability of selecting the true model approaches one as the number of

observations increases. Second, our approach has stronger discriminatory power whenρ is close

to zero compared to GMM-BIC. Third, GMM-AIC and GMM-HQIC select the right model more

often whenρ is not zero (no endogeneity). However, they seem to over-select the model with

endogeneity when there is no presence of endogeneity. In summary, under the data generating

process considered in this example, our BETEL-based model selection performs better than other

alternatives, especially in a finite sample.
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Table 3: Table 1 with other Frequentist approaches. Model selection frequencies from 100
replications of data simulated from the design in Example 1. For each combination ofn and
Cov(ε, u) = ρ, the entries give the number of times in 100 replications of the data that the log-
marginal likelihood ofMe exceeds the log-marginal likelihood ofMb. The numbers for BETEL
are slightly different from those reported in the main text because they are based on different sets
of simulated data, i.e., the random number seed is different.

BETEL -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

250 99 96 82 48 12 2 18 54 93 100 100
500 100 100 98 76 17 1 29 87 99 100 100

1000 100 100 100 96 46 1 46 100 100 100 100
2000 100 100 100 100 80 1 70 100 100 100100

GMM-BIC -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

250 100 97 77 35 7 3 11 40 84 99 100
500 100 100 96 72 8 1 16 74 99 100 100

1000 100 100 100 92 29 1 25 99 100 100 100
2000 100 100 100 99 63 1 47 100 100 100100

GMM-AIC -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

250 100 100 96 74 28 15 37 79 98 100 100
500 100 100 100 94 46 11 60 98 100 100 100

1000 100 100 100 99 71 11 76 100 100 100 100
2000 100 100 100 100 95 12 94 100 100 100100

GMM-HQIC -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

250 100 99 85 54 17 5 20 62 94 99 100
500 100 100 100 82 23 3 31 89 100 100 100

1000 100 100 100 98 54 2 56 100 100 100 100
2000 100 100 100 100 79 1 73 100 100 100100
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B Proofs of the main results

The following notation will be used in the proofs. Further notation will be introduced in the Sup-

plementary Appendix and will be used in the proofs there. When we omityi from the vector of

the i-th observation we use the notatioñwi := (x′
i, z

′
i)

′, and when in addition we omitz2,i we use

the notationw̃1,i := (x′
i, z

′
1,i)

′. We use the notationEn[∙] := 1
n

∑n
i=1[∙] for the empirical mean.

For a probabilityQ we use the notationEQ[∙] to denote the expectation with respect toQ and

VarQ the variance with respect toQ. For the true distributionP : E[∙] := EP [∙]. We use stan-

dard notation in empirical process theory:Pn := En[δwi ] whereδx is the Dirac measure atx, and

Gng :=
√
n(Pnf − Ef) for every functionf .

For a functionλ(θ) of θ, defineτ †
i (λ, θ) := eλ(θ)′gi(θ)

E[eλ(θ)′gj(θ)]
, so thatτ i(λ̂, θ) = np̂i(θ) andτ †

i (λ∗, θ) =

dQ∗(θ)/dP . We also use the notation:Ω�
∗(λ, θ) := E[τ �

i (λ, θ)εi(θ)w̃iw̃
′
i], Ω�

∗(θ) := Ω�
∗(λ∗, θ) and

Ω†
∗(θ) := E[τ †

i (λ∗, θ)εi(θ)w̃iw̃′
i] = EQ∗(θ)[εi(θ)w̃iw̃′

i]. Moreover,Ω∗ ≡ Ω�
∗(θ◦).

B.1 Proof of Theorem4.1

We first show that(i) is equivalent to(ii) . Suppose(i) is true. Then,P /∈ Qb,θ for everyθ ∈ Θ and

theI-projection ofP on the setQb,θ is different fromP , Q∗
b(θ) 6= P , for everyθ ∈ Θ. It follows

that also the reverse Kullback-Leibler divergence (where we have inverted the role played by the

two probabilities) is strictly positive:KL(P ||Q∗
b(θ)) > 0, for everyθ ∈ Θ. Since this is true for

everyθ ∈ Θ, it is also true forθ∗. Hence(ii) holds.

Now, suppose that(ii) is true. BecauseKL(P ||Q∗
b(θ∗)) > 0, thenP 6= Q∗

b(θ∗) andP /∈ Qb,θ∗ .

Sinceθ∗ minimizesKL(P ||Q∗
b(θ)), then we also have thatP /∈ Qb,θ for everyθ ∈ Θ. Hence(i)

holds.

Next, we show that(iii) is equivalent to(iv). Suppose(iii) holds. Then, there is aθ ∈ Θ, say

θ∗, for whichP ∈ Qb,θ∗ . Hence,Q∗
b(θ∗) = P andKL(P ||Q∗

b(θ)) = 0. Hence(iv) holds.

Now, suppose that(iv) holds. By the properties of the Kullback-Leibler divergence,KL(P ||Q∗
b(θ∗))

= 0 if and only if P = Q∗
b(θ). It follows thatP ∈ Qb,θ∗ becauseQ∗

b(θ∗) ∈ Qb,θ∗ and thereforeP
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satisfies the moment restrictionEP [εi(θ∗)xi] = 0. Hence(iii) holds.

�

B.2 Proof of Theorem4.2

Let us consider the expression for the likelihood evaluated atθ∗:

log q̂(w1:n|θ∗,Mb) = −n log n+
n∑

i=1

λ̂(θ∗)
′gb(wi, θ∗) − n log

1
n

n∑

j=1

eλ̂(θ∗)′gb(wj ,θ∗)

= −n log n+
n∑

i=1

λ̂(θ∗)
′g̃b(wi, θ∗) − n log

1
n

n∑

j=1

eλ̂(θ∗)′g̃b(wj ,θ∗),

= −n log n+
n∑

i=1

λ̂(θ∗)
′g̃b(wi, θ∗) + nλ̂(θ∗)

′E[gb(wi, θ∗)] − n log
1
n

n∑

j=1

eλ̂(θ∗)′gb(wj ,θ∗), (B.1)

whereg̃b(wi, θ∗) := gb(wi, θ∗)−E[gb(wi, θ∗)]. We first deal with the second term on the right hand

side of (B.1). By using the result of LemmaC.2:

n∑

i=1

λ̂(θ∗)
′g̃b(wi, θ∗) =

√
n(λ̂(θ∗) − λ∗(θ∗))

′ 1
√
n

n∑

i=1

g̃b(wi, θ∗) + λ∗(θ∗)
′
n∑

i=1

g̃b(wi, θ∗)

= −Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn [gb(wi, θ∗)] + λ∗(θ∗)
′
n∑

i=1

g̃b(wi, θ∗). (B.2)

Let λ̃ be on the line joiningλ∗(θ∗) and λ̂(θ∗), then a second order Taylor expansion ofλ 7→

1
n

∑n
j=1 e

λ′gb(wj ,θ∗) aroundλ∗(θ∗) gives

1
n

n∑

j=1

eλ̂(θ∗)′gb(wj ,θ∗) =
1
n

n∑

j=1

eλ∗(θ∗)′gb(wj ,θ∗) + (λ̂(θ∗)
′ − λ∗(θ∗)

′)
1
n

n∑

i=1

eλ∗(θ∗)′gb(wj ,θ∗)gb(wi, θ∗)

+
1
2

(λ̂(θ∗)
′ − λ∗(θ∗)

′)
1
n

n∑

j=1

eλ̃
′
gb(wj ,θ∗)gb(wj , θ∗)gb(wj , θ∗)

′(λ̂(θ∗) − λ∗(θ∗)). (B.3)

Under Assumption3 and because‖λ̃ − λ∗(θ∗)‖2 = Op(n−1/2) (since by LemmaC.1 ‖λ̂(θ∗) −

λ∗(θ∗)‖2 = Op(n−1/2) andλ̃ = τ(λ̂(θ∗) − λ∗(θ∗)) + λ∗(θ∗)) we can apply the same argument of
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the proof of LemmaC.5to get:

1
n

n∑

j=1

eλ̃
′
gb(wj ,θ∗)gb(wj, θ∗)gb(wj , θ∗)

′ p
→ Ω�

∗(θ∗) := E[eλ∗(θ∗)′gb(wj ,θ∗)εi(θ∗)
2w̃iw̃

′
i]. (B.4)

By replacing this in (B.3) and by using LemmaC.1to get the rate of theop(1/n) term, we obtain:

1
n

n∑

j=1

eλ̂(θ∗)′gb(wj ,θ∗) =
1
n

n∑

j=1

eλ∗(θ∗)′gb(wj ,θ∗) + (λ̂(θ∗)
′ − λ∗(θ∗)

′)
1
n

n∑

i=1

eλ∗(θ∗)′gb(wj ,θ∗)gb(wi, θ∗)

+
1
2

(λ̂(θ∗)
′ − λ∗(θ∗)

′)Ω�
∗(θ∗)(λ̂(θ∗) − λ∗(θ∗)) + op

( 1
n

)

= E
[
eλ∗(θ∗)′gb(wj ,θ∗)

]
+ (λ̂(θ∗)

′ − λ∗(θ∗)
′)

1
n

n∑

i=1

eλ∗(θ∗)′gb(wj ,θ∗)gb(wi, θ∗)

+
1
2

(λ̂(θ∗)
′ − λ∗(θ∗)

′)Ω�
∗(θ∗)(λ̂(θ∗) − λ∗(θ∗)) + Op

(
1

√
n

)

, (B.5)

where we have used the fact that| 1
n

∑n
j=1 e

λ∗(θ∗)′gb(wj ,θ∗) − E
[
eλ∗(θ∗)′gb(wj ,θ∗)

]
| = Op(1/

√
n) by

the Markov’s inequality and under Assumption5 (b). We now use the first order Taylor expansion

of the functionu 7→ log(u) aroundv: log(u) = log(v) + u−v
v

+ o(|u − v|), and plug (B.5) in it to

obtain:

log

(
1
n

n∑

i=1

eλ̂(θ∗)′gb(wi,θ∗)

)

= log
(
E
[
eλ∗(θ∗)′gb(wi,θ∗)

])
+(λ̂(θ∗)

′−λ∗(θ∗)
′)

1
n

n∑

i=1

τ †
i (λ∗, θ∗)gb(wi, θ∗)

+
1
2

(λ̂(θ∗)
′−λ∗(θ∗)

′)Ω†
∗(θ∗)(λ̂(θ∗)−λ∗(θ∗))+Op

(
1

√
n

)

+o

(∣∣
∣
∣
∣

1
n

n∑

i=1

eλ̂(θ∗)′gb(wi,θ∗) − E
[
eλ∗(θ∗)′gb(wi,θ∗)

]
∣
∣
∣
∣
∣

)

.

(B.6)

SinceE[τ †
i (λ∗, θ∗)gb(wi, θ∗)] = 0 and by using LemmaC.2, then

n

(

(λ̂(θ∗)
′ − λ∗(θ∗)

′)
1
n

n∑

i=1

τ †
i (λ∗, θ∗)gb(wi, θ∗) +

1
2

(λ̂(θ∗)
′ − λ∗(θ∗)

′)Ω†
∗(θ∗)(λ̂(θ∗) − λ∗(θ∗))

)

= −Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]

+
1
2
Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]
+ op(1)
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= −
1
2
Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]
+ op(1) (B.7)

Finally, we have to deal with
∣
∣
∣ 1
n

∑n
i=1 e

λ̂(θ∗)′gb(wi,θ∗) − E
[
eλ∗(θ∗)′gb(wi,θ∗)

]∣∣
∣. By using (B.5), Lemma

C.2and the fact that

1
√
n

n∑

i=1

eλ∗(θ∗)′gb(wj ,θ∗)gb(wi, θ∗) = Gn

[
1
n

n∑

i=1

eλ∗(θ∗)′gb(wj ,θ∗)gb(wi, θ∗)

]

we get that
∣
∣
∣ 1
n

∑n
i=1 e

λ̂(θ∗)′gb(wi,θ∗) − E
[
eλ∗(θ∗)′gb(wi,θ∗)

]∣∣
∣ = Op(1/n).

By replacing this result, (B.2), (B.6), and (B.7) in (B.1) we get:

log q̂(w1:n|θ∗,Mb) = −n log n−Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn [gb(wi, θ∗)]

+ λ∗(θ∗)
′
n∑

i=1

g̃b(wi, θ∗) + nλ̂(θ∗)
′E[gb(wi, θ∗)] − n log

(
E
[
eλ∗(θ∗)′gb(wi,θ∗)

])

+
1
2
Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]
+ op(1), (B.8)

whereGn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]
d−→ N (0,Ω†

∗(θ∗)). By noticing thatλ∗(θ∗)′∑n
i=1 g̃b(wi, θ∗) −

n log
(
E
[
eλ∗(θ∗)′gb(wi,θ∗)

])
=
∑n
i=1 log

(
τ †
i (λ∗, θ∗)

)
− nλ∗(θ∗)′E[gb(wi, θ∗)], we prove (4.3).

�

B.3 Proof of Theorem4.3

Since we are in the extended model, then there exists aψ◦ := (θ′
◦, v

′
◦)′ such thatE[εi(θ◦)w̃i] =

(v′
◦, 0

′)′ andλ∗(ψ◦) = 0. Let us consider the expression for the likelihood evaluated atψ◦:

log q̂(w1:n|ψ◦,Me) = −n log n+
n∑

i=1

λ̂(ψ◦)
′gb(wi, θ◦) − n log

1
n

n∑

j=1

eλ̂(ψ◦)′gb(wj ,θ◦)

= −n log n+
n∑

i=1

λ̂(ψ◦)
′ge(wi, ψ◦) − n log

1
n

n∑

j=1

eλ̂(ψ◦)′ge(wj ,ψ◦). (B.9)
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We start with dealing with the second term on the right hand side of (B.9). By using the result of

LemmaC.14:

n∑

i=1

λ̂(ψ◦)
′ge(wi, ψ◦) =

√
nλ̂(ψ◦)

′ 1
√
n

n∑

i=1

ge(wi, ψ◦)

= −Gn [ge(wi, ψ◦)
′] Ω−1

ψ◦
Gn [ge(wi, ψ◦)] + op(1). (B.10)

Let λ̃ be on the line joining0 andλ̂(ψ◦), then a second order Taylor expansion of the function

λ 7→ 1
n

∑n
j=1 e

λ′ge(wj ,θ◦) around0 gives

1
n

n∑

j=1

eλ̂(ψ◦)′ge(wj ,ψ◦) = 1 +
1
n

n∑

i=1

λ̂(ψ◦)
′ge(wi, ψ◦)

+
1
2
λ̂(ψ◦)

′ 1
n

n∑

j=1

eλ̃
′
ge(wj ,ψ◦)ge(wj , ψ◦)ge(wj , ψ◦)

′λ̂(ψ◦). (B.11)

Under Assumption3 and becausẽλ = Op(n−1/2) (since by LemmaC.15λ̂(ψ◦) = Op(n−1/2) and

λ̃ is between0 andλ̂(ψ◦)) we can apply the same argument of the proof of LemmaC.5to get:

1
n

n∑

j=1

eλ̃
′
ge(wj ,θ◦)ge(wj , θ◦)ge(wj , θ◦)

′ p
→ Ωψ◦

:= E[ge(wi, ψ◦)ge(wi, ψ◦)
′]. (B.12)

By replacing this in (B.11) and by using LemmaC.15to get the rate of theop(1/n) term, we obtain:

1
n

n∑

j=1

eλ̂(ψ◦)′ge(wj ,ψ◦) = 1 +
1
n

n∑

i=1

λ̂(ψ◦)
′ge(wi, ψ◦) +

1
2
λ̂(ψ◦)

′Ωψ◦
λ̂(ψ◦) + op(1/n). (B.13)

We now use the first order Taylor expansion of the functionlog(u) aroundu = 1: log(u) =

u− 1 + o(|u− 1|), and plug (B.13) in it to obtain:

log

(
1
n

n∑

i=1

eλ̂(ψ◦)′ge(wi,ψ◦)

)

=
1
n

n∑

i=1

λ̂(ψ◦)
′ge(wi, ψ◦)

+
1
2
λ̂(ψ◦)

′Ωψ◦
λ̂(ψ◦) + op (1/n) + o

(∣∣
∣
∣
∣

1
n

n∑

i=1

eλ̂(ψ◦)′ge(wi,ψ◦) − 1

∣
∣
∣
∣
∣

)

. (B.14)
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By using the result of LemmaC.14, then

n

(
1
n

n∑

i=1

λ̂(ψ◦)
′ge(wi, ψ◦) +

1
2
λ̂(ψ◦)

′Ωψ◦
λ̂(ψ◦)

)

=
√
nλ̂(ψ◦)

′Gn [ge(wi, ψ◦)]+
1
2

√
nλ̂(ψ◦)

′Ωψ◦

√
nλ̂(ψ◦)

= −Gn [ge(wi, ψ◦)
′] Ω−1

ψ◦
Gn [ge(wi, ψ◦)] +

1
2
Gn [ge(wi, ψ◦)

′] Ω−1
ψ◦
Gn [ge(wi, ψ◦)] + op(1)

= −
1
2
Gn [ge(wi, ψ◦)

′] Ω−1
∗ Gn [ge(wi, ψ◦)] + op(1). (B.15)

Finally, we have to deal with
∣
∣
∣ 1
n

∑n
i=1 e

λ̂(ψ◦)′ge(wi,ψ◦) − 1
∣
∣
∣. By using exactly the same argument

we have used in the proof of LemmaC.7 with λ∗(θ∗) replaced byλ∗(ψ◦) = 0 we get that
∣
∣
∣ 1
n

∑n
i=1 e

λ̂(ψ◦)′ge(wi,ψ◦) − 1
∣
∣
∣ = op(1).

By replacing this result and (B.15) in (B.14), and then by plugging (B.10) and (B.14) in (B.9)

we get:

log q̂(w1:n|ψ◦,Mb) = −n log n−
1
2
Gn [ge(wi, ψ◦)

′] Ω−1
ψ◦
Gn [ge(wi, ψ◦)] + op(1)

= −n log n−
1
2
Gn [gb(wi, θ◦)

′] Ω−1
ψ◦
Gn [gb(wi, θ◦)]−2

√
nGn [gb(wi, θ◦)

′] Ω−1
ψ◦
ṽ◦+nṽ

′
◦Ω

−1
ψ◦
ṽ◦+op(1).

(B.16)

Moreover, by the central limit theorem,

Gn [ge(wi, ψ◦)]
d−→ N (0,Ωψ◦

)

and

Gn [ge(wi, ψ◦)
′] Ω−1

∗ Gn [ge(wi, ψ◦)]
d−→ χ2

d.

�
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B.4 Proof of Corollary 4.1

By result (4.3) in Theorem4.2we have that

1
n

log q̂(w1:n|θ∗,Mb) + log(n) =
1
n

n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)

+ (λ̂(θ∗) − λ∗(θ∗))
′E[gb(wi, θ∗)] + Op(1/n). (B.17)

By LemmaC.1in the Online Appendix,‖λ̂(θ∗) − λ∗(θ∗)‖2
p
−→ 0. By the Law of Large Numbers

1
n

n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)
p
−→ E

[

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)]

.

This concludes the proof.

�

B.5 Proof of Corollary 4.2

By result (4.4) in Theorem4.3we have that

1
n

log q̂(w1:n|ψ◦,Me) + log(n) = Op(1/n).

Sinceλ∗(ψ◦) = 0 then, e
λ∗(ψ◦)′

∑n

i=1
gb(wi,ψ◦)

E[e
λ∗(ψ◦)′

∑n

i=1
gb(wj,ψ◦)

]
= 1 and so we can equivalently write:

1
n

log q̂(w1:n|ψ◦,Me) + log(n) =
1
n

n∑

i=1

log

(
eλ∗(ψ◦)′gb(wi,ψ◦)

E[eλ∗(ψ◦)′gb(wj ,ψ◦)]

)

+ Op(1/n).

By the Law of Large Numbers

1
n

n∑

i=1

log

(
eλ∗(ψ◦)′gb(wi,ψ◦)

E[eλ∗(ψ◦)′gb(wj ,ψ◦)]

)
p
−→ E

[

log

(
eλ∗(ψ◦)′gb(wi,ψ◦)

E[eλ∗(ψ◦)′gb(wj ,ψ◦)]

)]

.

This concludes the proof.
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B.6 Proof of Theorem4.4

The proof is organised in two parts. In the first part we show thatKL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗

b(θ∗))

if and only if there is noθ such thatE[εi(θ)xi] = 0. In the second part we show that

P (logm(w1:n|Me) > logm(w1:n|Mb)) → 1

if and only if KL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗

b(θ∗)).

First part. We start by proving thatKL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗

b(θ∗)) if and only if there is

no θ such thatE[εi(θ)xi] = 0. Notice thatKL(P ||Q∗
e(ψ◦)) = 0. Suppose thatKL(P ||Q∗

e(ψ◦)) <

KL(P ||Q∗
b(θ∗)) and suppose that there exists aθ such thatE[εi(θ)xi] = 0 so thatP ∈ Qb,θ. By

Assumption2 with θ∗ replaced byθ◦ then thisθ must be equal toθ◦ which in turn equalsθ∗. It

follows thatP ∈ Qb,θ∗ and by definition ofQ∗
b(θ∗): Q∗

b(θ∗) = P sinceQ∗
b(θ∗) is the closest to

P , in the KL sense, among all the distributions inQb,θ∗ . Hence,KL(P ||Q∗
b(θ∗)) = 0. But this

contradicts the assumption thatKL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗

b(θ∗)). Hence, there is noθ such that

E[εi(θ)xi] = 0.

We now prove the reverse implication. Suppose that there is no valueθ such thatE[εi(θ)xi] =

0. Hence,P /∈ Qb,θ for everyθ ∈ Θ which impliesP /∈ Qb,θ∗ andKL(P ||Q∗
b(θ∗)) > 0. On the

other hand, there exists a uniqueψ◦ ∈ Rdx such thatP ∈ Qe,ψ◦
sincePe,◦ is always correctly

specified. This implies thatKL(P ||Q∗
e(ψ◦)) = 0 and soKL(P ||Q∗

e(ψ◦)) < KL(P ||Q∗
b(θ∗)).

Second part. We show thatP (logm(w1:n|Me) > logm(w1:n|Mb)) → 1 if and only ifKL(P ||Q∗
e(ψ◦))

< KL(P ||Q∗
b(θ∗)). By Theorems4.2and4.3, and TheoremsC.6andC.7 in the Online Appendix
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and by (4.1)-(4.2), then (4.9)-(4.10) hold. By (4.9), thelogm(w1:n|Mb) is equal to

−n log n+
n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)

+ n(λ̂(θ∗) − λ∗(θ∗))
′E[gb(wi, θ∗)] −

p

2
log(n) + Op(1)

and by (4.10), logm(w1:n|Me) = −n log(n) − p+dx
2 log(n) + Op(1). Hence, since from the Law

of Large Numbers:

1
n

n∑

i=1

log



 eλ∗(θ∗)′
∑n

i=1
gb(wi,θ∗)

E[eλ∗(θ∗)′
∑n

i=1
gb(wj ,θ∗)]



 p
−→ E



log



 eλ∗(θ∗)′
∑n

i=1
gb(wi,θ∗)

E[eλ∗(θ∗)′
∑n

i=1
gb(wj ,θ∗)]







 = −KL(P ||Q∗
b(θ∗)),

it follows that

P (logm(w1:n|Me) > logm(w1:n|Mb)) = P
( 1
n

logm(w1:n|Me) >
1
n

logm(w1:n|Mb)
)

= P
(
0 > −KL(P ||Q∗

b(θ∗)) + Op(1/
√
n)
)
,

where we have used LemmaC.1 in the Online Appendix to control
√
n(λ̂(θ∗) − λ∗(θ∗)). Sup-

pose thatKL(P ||Q∗
b(θ∗)) > 0 then the previous probability converges to1. On the other hand,

suppose thatP (0 > −KL(P ||Q∗
b(θ∗)) + Op(1/

√
n)) → 1 asn → ∞. This is possible only if

KL(P ||Q∗
b(θ∗)) > 0. By the first part of the proofKL(P ||Q∗

b(θ∗)) > 0 if and only if there is noθ

such thatE[εi(θ)xi] = 0.

We now prove the last assertion of the theorem. In the case where there is aθ◦ such that

E[εi(θ◦)xi] = 0, thenKL(P ||Q∗
b(θ◦)) = 0 and the probabilityP (0 > −KL(P ||Q∗

b(θ∗)) + Op(1/
√
n))

is equal to zero asn → ∞. This concludes the proof.

�
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B.7 Proof of Theorem4.5

We start by supposing thatE[εi(θ◦)xi] = 0. In this case,θ∗ = θ◦, λ∗(θ∗) = λ∗(θ◦) = 0 and by

Theorems4.2and4.3:

log q̂(w1:n|θ◦,Mb) − log q̂(w1:n|ψ◦,Me)

= −n log n−
1
2
Gn [gb(wi, θ◦)

′] Ω−1
◦ Gn [gb(wi, θ◦)] + n log n

+
1
2
Gn [gb(wi, θ◦)

′] Ω−1
◦ Gn [gb(wi, θ◦)] + op(1) = op(1). (B.18)

Let πnhθ(∙|w1:n,Mb) andπnhψ(∙|w1:n,Me) denote the posterior density ofhθ andhψ, respectively.

By CorollaryC.1 in the Online Appendix (which is valid ifE[εi(θ◦)xi] = 0 holds)

log πnhθ(
√
n(θ − θ◦)|w1:n,Mb)

∣
∣
∣
θ=θ◦

= −
p

2
log(2π) +

1
2

log |V −1
θ◦

|

−
1
2
Gn [εi(θ◦)w̃

′
i] Ω−1

◦ E[w̃iw̃
′
1,i]Vθ◦E[w̃1,iw̃

′
i]Ω

−1
◦ Gn [εi(θ◦)w̃i] + op(1) (B.19)

and by TheoremC.7in the Online Appendix

log πnhψ(
√
n(ψ − ψ◦)|w1:n,Me)

∣
∣
∣
ψ=ψ◦

= −
(p+ dx)

2
log(2π) +

1
2

log |V −1
ψ◦

|

−
1
2
Gn [εi(θ◦)w̃

′
i] Ω−1

◦

[
dge(wi, ψ◦)

′

dψ

]

Vψ◦

[
dge(wi, ψ◦)

dψ′

]

Ω−1
◦ Gn [εi(θ◦)w̃i] + op(1), (B.20)

whereVθ◦ andVψ◦
are defined in CorollaryC.1and TheoremC.7 in the Online Appendix. Hence,

by replacing (B.20), (B.19) and (B.18) in logm(w1:n|Mb) − logm(w1:n|Me) by using the expres-

sions for the log-marginal likelihoods given in (4.1)-(4.2) with θ∗ replaced byθ◦, we obtain:

P (logm(w1:n|Mb) > logm(w1:n|Me)) = P
(

log π(θ◦|Mb) +
p

2
log(2π) −

1
2

log |V −1
θ◦

|

+
1
2
Gn [εi(θ◦)w̃

′
i] Ω−1

◦ E[w̃iw̃
′
1,i]Vθ◦E[w̃1,iw̃

′
i]Ω

−1
◦ Gn [εi(θ◦)w̃i] −

p

2
log(n)

> log π(ψ◦|Me) +
(p+ dx)

2
log(2π) −

1
2

log |V −1
ψ◦

|
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+
1
2
Gn [εi(θ◦)w̃

′
i] Ω−1

◦

[
dg(wi, ψ◦)

′

dψ

]

Vψ◦

[
dg(wi, ψ◦)

dψ′

]

Ω−1
◦ Gn [εi(θ◦)w̃i]−

p+ dx
2

log(n)+op(1)
)

.

(B.21)

BecauseGn [εi(θ◦)w̃i] = Op(1), |V −1
θ◦

| = O(1) and|V −1
ψ◦

| = O(1) (sinceVθ◦ andVψ◦
are positive

definite under Assumption4), then we can factorizelog(n) in (B.21) and get:

P (logm(w1:n|Mb) > logm(w1:n|Me)) =

= P
(

0 > log(n)
[ 1
log(n)

log
π(ψ◦|Me)
π(θ◦|Mb)

+
dx log(2π)
2 log(n)

−
1

2 log(n)
log

|Vθ◦ |
|Vψ◦

|
−
dx
2

+
1

2 log(n)
Gn [εi(θ◦)w̃

′
i] Ω−1

◦

([
dg(wi, ψ◦)

′

dψ

]

Vψ◦

[
dg(wi, ψ◦)

dψ′

]

− E[w̃iw̃
′
1,i]Vθ◦E[w̃1,iw̃

′
i]

)

× Ω−1
◦ Gn [εi(θ◦)w̃i]

]

+ op(1)
)

= P

(

0 > log(n)

[

op(1) −
dx
2

]

+ op(1)

)

→ 1 (B.22)

asn → ∞. This proves the first implication.

We now prove the reverse implication. Suppose thatP (logm(w1:n|Mb) > logm(w1:n|Me)) →

1. By (4.1)-(4.2):

P (logm(w1:n|Mb) > logm(w1:n|Me)) = P
(

log π(θ∗|Mb) + log q̂(w1:n|θ∗,Mb)

− log πnhθ(0|w1:n,Mb) −
p

2
log(n) > log π(ψ◦|Me) + log q̂(w1:n|ψ◦,Me)

− log πnhψ(0|w1:n,Me) −
p+ dx

2
log(n)

)

(B.23)

By using Theorems4.2and4.3, we get:

log q̂(w1:n|θ∗,Mb) − log q̂(w1:n|ψ◦,Me) = −A′
nΩ†

∗(θ∗)
−1Bn

+
n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)

+ n(λ̂(θ∗) − λ∗(θ∗))
′E[gb(wi, θ∗)]

+
1
2
Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

′
]

Ω†
∗(θ∗)

−1Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)

]

+
1
2
Gn [ge(wi, ψ◦)

′] Ω−1
ψ◦
Gn [ge(wi, ψ◦)] + op(1), (B.24)
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whereAn := Gn

[
τ †
i (λ∗, θ∗)gb(wi, θ∗)′

]
d−→ N (0,Ω†

∗(θ∗)), Bn := Gn [gb(wi, θ∗)′] d−→ N (0,E[εi(θ◦)]w̃iw̃′
i)

andGn [ge(wi, ψ◦)
′] Ω−1

ψ◦
Gn [ge(wi, ψ◦)]

d−→ χ2
d and so they are bounded in probability. Moreover,

by the Law of Large Numbers:

∣
∣
∣
∣
∣

1
n

n∑

i=1

log

(
eλ∗(θ∗)′gb(wi,θ∗)

E[eλ∗(θ∗)′gb(wj ,θ∗)]

)

− EP [log(dQ∗
b(θ∗)/dP )]

∣
∣
∣
∣
∣
= Op(1/

√
n),

whereEP [log(dQ∗
b(θ∗)/dP )] = −KL(P ||Q∗

b(θ∗)), and by LemmaC.2in the Online Appendix,

√
n(λ̂(θ∗) − λ(θ∗))

′E[gb(wi, θ∗)] = −Gn[τ †
i (λ∗, θ∗)εi(θ∗)w̃

′
i]Ω

†
∗(θ∗)

−1E[gb(wi, θ∗)] + op(1).

Therefore,

log q̂(w1:n|θ∗,Mb) − log q̂(w1:n|ψ◦,Me)

= Op(1) + n
(
Op(1/

√
n) − KL(P ||Q∗

b(θ∗))
)

+
√
nOp(1) (B.25)

By replacing (B.25) in (B.23), and by using TheoremsC.6 andC.7 in the Online Appendix

to show thatlog πnhθ(0|w1:n,Mb) = Op(1) and log πnhψ(0|w1:n,Me) = Op(1), the expression in

(B.23) is equal to:

P (logm(w1:n|Mb) > logm(w1:n|Me))

= P
(

Op(1)
√
n− nKL(P ||Q∗

b(θ∗)) > Op(1) −
dx
2

log(n)
)

(B.26)

whereOp(1)
√
n− nKL(P ||Q∗

b(θ∗)) in the left hand side converges to−∞ if KL(P ||Q∗
b(θ∗)) > 0

(since the term inn is diverging faster than the term in
√
n) while the term on the right hand side

also converges towards−∞. The inequality is then satisfied with probability approaching1 only

if KL(P ||Q∗
b(θ∗)) = 0. This is equivalent to haveE[εi(θ◦)xi] = 0 (by the first part of the proof of

Theorem4.4) and we have proved the second part of the ‘if and only if’ statement.
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