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1 Introduction

Consider the semiparametric linear regression model y = x′β + z′
1γ + ε, where y is the scalar

response, x ∈ Rdx is the treatment vector of interest, z1 is a vector of controls and ε is the idiosyn-

cratic noise with an unknown distribution. A standard assumption in the Bayesian estimation of

such models is that the regressors x are exogenous (uncorrelated with the error). In many practical

applications, however, this assumption is not satisfactory and is likely to be at odds with the data.

Provided one has a vector of valid instruments z2, at least of the same dimension as x, it is possi-

ble to develop a prior-posterior analysis of the parameters based on those instruments, from both

the parametric and semiparametric Bayesian viewpoints, see for example, Drèze (1976), Kleiber-

gen and van Dijk (1998), Chao and Phillips (1998), Kleibergen and Zivot (2003), Hoogerheide,

Kleibergen and van Dijk (2007), Schennach (2005), Liao and Jiang (2011), Florens and Simoni

(2012, 2016, 2021), Kato (2013), Shin (2014), and, of particular relevance to the current paper,

Chib, Shin and Simoni (2018).

In this paper we contribute to this extensive literature in two dimensions. Under the rubric

of the exponentially tilted empirical likelihood, we first derive the consequences of fitting (what

we call) the base model from moment conditions that neglect endogeneity. Specifically, given the

moment conditions, E[ε(θ)x] = 0, E[ε(θ)z1] = 0 and E[ε(θ)z2] = 0, where ε(θ) := (y−x′β+z′
1γ)

and θ := (β′, γ′)′, we derive a Bernstein-von Mises (BvM) theorem for the posterior of the scaled

θ in this model when the assumption of exogeneity is false in the population. This is the first

such result in the literature. As a corollary we also derive the limiting posterior distribution of the

scaled θ when the exogeneity assumption is true. By comparing these two posterior distributions

we show that the consequences of neglecting endogeneity can be severe. This result gives pause

to the standard practice of fitting Bayesian regression models under the default assumption of

exogeneity.

Another missing element in the existing literature is a test for the exogeneity/endogeneity of the

regressors. Such a test would be desirable given the consequences of neglected endogeneity that

we document. To fill this gap, we derive the first Bayesian test for the endogeneity of regressors.
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This test is based on the marginal likelihood of the base model, and the marginal likelihood of an

extended model that has the same z1 and z2 orthogonality conditions as the base model, but has the

exogeneity condition amended to E[ε(θ)x] = v, where v is a vector of new parameters. We show

that the log of the Bayes factor (ratio of marginal likelihoods) of the base vs the extended model

is a consistent Bayesian test of endogeneity. Specifically, with probability approaching one as the

sample size increases, the test picks the base model when x is exogenous, and the extended model

when x is endogenous. Interestingly, the idea of comparing two models to detect endogeneity,

one which is misspecified under endogeneity and the other which is not, is similar in spirit to the

frequentist Hausman (1978) test where the comparison is based on estimators (rather than models)

that are inconsistent and consistent under endogeneity. In this sense, the log-Bayes factor test we

provide is a Bayesian analogue of the Hausman test for endogeneity.

The rest of the paper is organized as follows. In Section 2 we specify the base model and

analyze it when x is endogenous and when it is not. We derive BvM theorems for θ in each case

and discuss the consequences of neglected endogeneity. In Section 3 we consider the extended

model that is robust to endogeneity of x and derive the corresponding BvM theorem for the aug-

mented parameter ψ := (θ′, v′)′. In Section 4 we develop our Bayes factor test for endogeneity

and establish its large-sample model consistency. In Section 5 we illustrate the practical value of

the methodology with real data applications. Concluding remarks are made in Section 6. Proofs of

the theorems are collected in the appendix (and an online supplementary appendix).

2 Base model

Consider a random vector wi = (yi, xi, zi) ∈ Rd+1 from an unknown probability distribution P ,

where yi ∈ R, xi ∈ Rdx , zi = (z′
1,i, z

′
2,i)′ ∈ Rdz , dz = dz1 + dz2 and d = dx + dz. Suppose that

under P , wi follows the regression model

yi = β′
◦xi + γ′

◦z1,i + εi , (2.1)
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where the focus is on the causal effect of x on y, captured by the parameter β◦, and z1 is a vector

of controls. Letting

εi(θ) : = yi − β′xi − γ′z1,i

≡ yi − θ′w̃1,i ,

where w̃1,i := (x′
i, z

′
1i)′, θ := (β′, γ′)′ ∈ Θ ⊂ Rp (p := dx + dz1), θ◦ := (β′

◦, γ
′
◦)′ and E[·] :=

EP [·] denotes the expectation with respect to the true distribution P , suppose also that zj,i, j =

1, 2, satisfy the (exogeneity) restrictions E[εi(θ◦)zj,i] = 0. Assume that the intercept (if any) is

contained in z1. In this set-up, z2 is a vector of instrumental variables (variables that are correlated

with x and do not directly affect the outcome). Under the assumption that dz2 ≥ dx, the instruments

help to identify β◦ when E[εi(θ◦)xi] ̸= 0.

2.1 Moment restrictions

Now suppose that one has prior information about θ that is summarized in a prior density π(θ),

which we assume has positive mass around θ◦, for any θ◦. Generally, in a default Bayesian analysis,

given data w1:n = {wi}ni=1 iid from P , this prior would be updated assuming that εi follows a

parametric distribution, or an unknown distribution modeled by a Dirichlet process prior with a

Gaussian base measure, for example, Chib and Greenberg (2010). Moreover, the assumption that

xi is exogenous would be maintained.

In this paper we consider an even more assumption-light approach and consider updating the

prior based solely on moment restrictions, free of additional assumptions about the distribution

of εi. In the base model, Bayesian updating is made under the assumption that xi is exogenous,

that is, E[εi(θ◦)xi] = 0. To define the moment restrictions, define the d vector of functions for a
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generic value of θ

g(wi, θ) := εi(θ)


xi

z1i

z2i

 .

Then, the moment restrictions can be expressed as

E[g(wi, θ◦)] = 0. (2.2)

Note that the assumption of exogeneity is potentially erroneous. If this is the case, then the mo-

ments restrictions (2.2) would be misspecified in the sense that these restrictions are not satisfied

for the true P for any value of θ. To benchmark the cost of misspecification, and to develop a

test of endogeneity, we specify below in Section 3 an extended model that is immune from this

problem.

2.2 ETEL posterior

Suppose now that the data distribution P conditional of θ is given the nonparametric prior in

Schennach (2005). Then, following arguments in Schennach (2005), the nonparametric marginal

posterior of θ, after marginalization over P , is given by the truncated distribution

πn(θ|w1:n) ∝ π(θ) p̂(w1:n|θ) I[θ ∈ H], (2.3)

where π(θ) is the prior density, P n(θ) = {p̂i(θ)} is the exponentially tilted likelihood (ETEL)

function, and I[A] denotes the indicator function of the event A. Formally, the ETEL function

is the discrete probability distribution with support on the atoms wi, i = 1, . . . , n, that is nearest

in the Kullback-Leibler (KL) discrepancy to the empirical { 1
n
} distribution satisfying the moment
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restrictions, that is,

{p̂i(θ)} := arg max
p1,...,pn

n∑
i=1

[−pi log(npi)]

subject to
n∑
i=1

pi =1, and
n∑
i=1

pig(wi, θ) = 0. (2.4)

The region of truncation H is given by H := {θ : ∑n
i=1 p̂i(θ)g(wi, θ) = 0}. Equivalently, since the

maximizer in (2.4) is unique it can be shown that H is the set of θ for which the convex hull of⋃n
i=1 g(wi, θ) contains zero. If H is empty, there is no solution in θ to (2.4).

In practice, a convenient way to compute the ETEL function is from the dual of (2.4). In

particular, one can derive that

p̂i(θ) := eλ̂(θ)′g(wi,θ)∑n
j=1 e

λ̂(θ)′g(wj ,θ)
, i = 1, . . . , n , (2.5)

where λ̂(θ) ≡ λ̂(w1:n, θ) := arg minλ∈Rd
1
n

∑n
i=1 exp (λ′g(wi, θ)).

The posterior πn(θ|w1:n) is, of course, not in closed form, but it can be summarized by MCMC

methods for any n. In the sequel we are interested in the large sample behavior of this posterior

distribution when the E[ε(θ◦)x] = 0 restrictions are assumed but these are restrictions are false.

Apparently, there are no results of this type even in a parametric Bayesian set up.

We conclude by defining the population counterpart of P n(θ), which is needed for our theoret-

ical work. Let

Qθ =
{
Q ∈ M; EQ[g(wi, θ)] = 0

}
(2.6)

denote the set of probability distributions that satisfy the moment conditions for a given θ, where

M is the set of all probability distributions on Rd+1. Then, the population counterpart of P n(θ) is

the element from Qθ that is closest to P in the KL divergence. Denote this best element, for every

θ ∈ Θ, as

Q∗(θ) := arginfQ∈Qθ
KL(Q||P ) (2.7)
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where KL(Q||P ) :=
∫

log
(
dQ
dP

)
dQ is the KL discrepancy of Q from P if Q is absolutely con-

tinuous with respect to P ; otherwise the discrepancy is equal to +∞. Moreover, when the dual

representation of the KL minimization problem (2.7) holds, which is always true if the moments

are correctly specified, Q∗(θ) has a closed form Radon-Nikodyn derivative with respect to P :

dQ∗(θ)
dP

= eλ
′
∗(θ)g(w,θ)

E[eλ′
∗(θ)g(W,θ)] ,

where λ∗(θ) := arg minλ∈Rd E[eλ′g(w,θ)], unique by the strict convexity of the integrand in λ.

2.3 Neglected endogeneity

The base model is misspecified if the x-exogenous assumption is false. Let us call this neglected

endogeneity. Then, there is no value of θ for which the true data generating process P satisfies the

moment restriction E[g(wi, θ)] = 0, that is, P /∈ ⋃
θ∈Θ Qθ. In this case, we show that the posterior

concentrates on a ball centered on the pseudo-true value θ∗ ̸= θ◦, which we suppose is unique

(see Assumption 2.2 below). While we maintain the assumption that E[g(wi, θ∗)] exists, the fact

that, for every value of θ, E[g(wi, θ)] ̸= 0 implies that the tilting parameter λ∗(θ) is nonzero. This

becomes a complicating factor in the derivations.

The pseudo-true value is that value of θ that minimizes KL(P ||Q∗(θ)), for Q∗(θ) defined in

(2.7). Notice the inversion of the probabilities in the KL discrepancies used to define Q∗(θ) and

θ∗. By definition, EQ∗(θ)[g(wi, θ)] = 0 for every θ ∈ Θ, where EQ∗(θ)[·] denotes the expectation

with respect to Q∗(θ). The term involving θ in KL(P ||Q∗(θ)) is simply the P expectation of

− log dQ∗(θ)
dP

. Thus, when the dual representation holds, we can get the pseudo-true value as

θ∗ = arg max
θ∈Θ

E log
(

eλ
′
∗(θ)g(w,θ)

E[eλ′
∗(θ)g(W,θ)]

)
. (2.8)

If the moments are misspecified, however, it is possible thatQ∗(θ) and P do not have a common

support, for any θ, see Sueishi (2013) for a discussion on this point, in which case, the maximizer

in (2.8) would not necessarily equal the θ∗ that directly minimizes KL(P ||Q∗(θ)). To avoid this
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situation, we introduce the following assumption.

Assumption 2.1 (Non-emptyness.) When E[εixi] ̸= 0, there exists Q ∈ ⋃
θ∈Θ Qθ such that Q is

mutually absolutely continuous with respect to P , where Qθ is defined in (2.6).

This assumption implies that there is a θ for which Qθ is non-empty and that θ∗ is identified by

(2.8). We also assume that the pseudo-true value is unique.

Assumption 2.2 (Identification.) The maximizer θ∗ in (2.8) is unique and is in the interior of Θ,

where the interior is defined with respect to Rp.

The next assumption is standard when studying the frequentist properties of Bayesian proce-

dures. First, it requires that the prior density of θ is continuous so that π(θ∗ + h/
√
n) behaves

like the constant π(θ∗) for n large, for very bounded h ∈ Rp. Second, it requires that θ∗ lies in

the support of the prior. This is a necessary (though, of course, not sufficient) condition for the

posterior distribution to concentrate on θ∗ as n becomes large.

Assumption 2.3 (a) π is a continuous probability measure that admits a density with respect to

the Lebesgue measure; (b) π is positive on a neighborhood of θ∗.

We conclude with three assumptions about the model. Recall the notation wi := (yi, x′
i, z

′
i)′

and w̃1,i := (x′
i, z

′
1,i)′. Moreover, we denote w̃i := (x′

i, z
′
i)′, ∥ · ∥2 the Euclidean norm and ∥ · ∥F

the Frobenius norm.

Assumption 2.4 (a) wi, i = 1, . . . , n are i.i.d. observable random variables each one taking

values in a complete probability space (W ,BW , P ), where W ⊆ Rd+1, BW is the associated

σ-field and P is a probability distribution satisfying model (2.1); (b) Θ ⊂ Rp is compact and

connected; (c) for every λ in a neighborhood of λ∗(θ∗) the matrix E[eλ′g(wi,θ∗)εi(θ∗)2w̃iw̃
′
i] has

smallest (resp. largest) eigenvalue bounded away from zero (resp. infinity).

Assumption 2.5 (a) E[∥w̃iw̃′
1,i∥F ] < ∞; (b) E[w̃iw̃′

1,i] < ∞ with rank p.
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Assumptions 2.4 and 2.5 are standard in the literature, see e.g. Schennach (2007). Assump-

tion 2.4 (c) guarantees that the asymptotic covariance matrix is invertible. In this paper we show

stochastic local asymptotic normality (LAN) of the ETEL function by developing a proof dif-

ferent from the one derived in Chib et al. (2018), see Theorem A.1 in the Appendix. Stochas-

tic LAN is an essential step in the proof of the Bernstein von-Mises theorem (see e.g. Van der

Vaart (1998)) and it is established based on the following assumption. We denote by w̃i,k the

k-th component of w̃i. Moreover, for any δ > 0 and for some constant C > 0 we denote by

Bδ(λ∗(θ∗)) := {λ ∈ Rd; ∥λ − λ∗(θ∗)∥2 ≤ Cδ} (resp. Bδ(θ∗) := {θ ∈ Rp; ∥θ − θ∗∥2 ≤ Cδ}) a

closed ball centered around λ∗(θ∗) (resp. θ∗) with radius δ.

Assumption 2.6 (a) For any δ > 0 there is a function γ0(wi) such that
∥∥∥eλ′g(wi,θ)g(wi, θ)

∥∥∥
2

≤

γ0(wi) for every λ ∈ Bδ(λ∗(θ∗)) and every θ ∈ Bδ(θ∗), and E[γ0(wi)] < ∞; (b) for any δ > 0

there exists a function γ1(wi) such that
∣∣∣eλ′g(wi,θ)

∣∣∣ ≤ γ1(wi) for every λ ∈ Bδ(λ∗(θ∗)), every θ ∈

Bδ(θ∗) and E[γ1(wi)] < ∞; (c) for j, ℓ, ℓ′ = 1, 2, for any k = 1, . . . , k and every δ > 0 there exists

a function γ2(wi) such that
∣∣∣eλ′g(wi,θ)εi(θ)j−1w̃ℓi,k(h′w̃1,i)ℓ

′
∣∣∣ ≤ γ2(wi) for every λ ∈ Bδ(λ∗(θ∗)),

every θ ∈ Bδ(θ∗) and every h in a compact set, and E[γ2(wi)] < ∞; (d) the following operator

norm

E
[

sup
λ∈Bδ(λ∗(θ∗))

∥∥∥e(ℓ−2)λ′g(wi,θ∗)εi(θ∗)ℓw̃ℓ−2
i,k w̃iw̃

′
i

∥∥∥]

is bounded away from infinity for every k = 1, . . . , d, any δ > 0 and for ℓ = 3, 4;

(e) for any δ > 0, E
[
supλ∈Bδ(λ∗(θ∗)) e

2λ′g(wi,θ∗)εi(θ∗)2 ∥w̃i∥2
2

]
< ∞; (f) for every j, k = 1, . . . , d

and every δ > 0 there exists a function bj,k(wi) such that
∣∣∣eλ′gi(wi,θ∗)w̃i,jw̃i,kεi(θ∗)2

∣∣∣ ≤ bj,k(wi) for

every λ ∈ Bδ(λ∗(θ∗)) and E[bj,k(wi)] < ∞; (g) for any j, k = 1, . . . , k and every δ > 0 there

exists a function γ3(wi) such that
∣∣∣eλ′g(wi,θ)εi(θ)w̃i,kw̃i,jh′w̃1,i

∣∣∣ ≤ γ3(wi) for every λ ∈ Bδ(λ∗(θ∗)),

every θ ∈ Bδ(θ∗) and every h in a compact set, and E[γ3(wi)] < ∞.

Under these assumptions, and an identification-type condition (stated in the next theorem), we

are now able to establish that the posterior distribution concentrates on θ∗ at the rate
√
n as the

sample size increases. We use the notation ℓn,θ(wi) := log p̂i(θ) for the log-likelihood for one
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observation wi.

Theorem 2.1 (Posterior Consistency) Let Assumptions 2.1 - 2.6 hold. Let

Θn := {∥θ − θ∗∥ ≤ Mn/
√
n},

denote a ball around θ∗ with radius at most Mn/
√
n, where Mn is any sequence of positive con-

stants diverging to ∞. Assume that there exists a constant C > 0 such that

P

(
sup
θ∈Θcn

1
n

n∑
i=1

(ℓn,θ(wi) − ℓn,θ∗(wi)) ≤ −CM2
n

n

)
→ 1 , as n → ∞. (2.9)

Then,

π
(√

n∥θ − θ∗∥ > Mn

∣∣∣w1:n
)

p→ 0 , as n → ∞ . (2.10)

This theorem states that the posterior concentrates at the parametric rate despite the semipara-

metric nature of the problem. This result is important in proving the Bernstein-von Mises theorem

stated given in Theorem (2.2) below.

Condition (2.9) controls the behaviour of the ETEL function θ 7→ ℓn,θ(wi) at a distance from

θ∗ and it ensures that θ∗ is well-separated from θs that are at a certain distance from it. A similar

condition is in Kleijn and van der Vaart (2012, Lemma 4.2) and it is also related to the classical

condition in e.g. Lehmann and Casella (1998, Assumption 6.B.3) and Chernozhukov and Hong

(2003, Assumption 3). To better understand the meaning of this assumption, note that asymptot-

ically the log-ETEL function is maximized at the pseudo-true value θ∗. Hence, Assumption (2.9)

requires that if the parameter θ is far from the pseudo-true value θ∗, that is ∥θ − θ∗∥ > Mn/
√
n,

then
∑n
i=1 ℓn,θ(wi) evaluated at such θ has to be small relative to the close to the maximum value∑n

i=1 ℓn,θ∗(wi). Controlling this behavior is important because the posterior involves integration

over the whole support of θ. Subsets of Θ that can be distinguished from θ∗ uniformly (with prob-

ability approaching 1 as n → ∞) based on the ETEL function will receive a posterior probability

that is asymptotically negligible. An alternative to this condition would be to require the existence
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of asymptotically consistent tests ϕn that are able to distinguish from the true distribution P in a

uniform way, that is, for every ϵ > 0 there exists a sequence of tests {ϕn} such that as n → 0,

E[ϕn] → 0, and sup
{θ;∥θ−θ∗∥≥ϵ}

E
[
eℓn,θ(wi)−ℓn,θ∗ (wi)(1 − ϕn)

]
→ 0. (2.11)

2.4 BvM theory

Since Theorem (2.1) establishes that the posterior concentrates in neighbourhoods of θ∗ of size de-

creasing at the rate n−1/2, then we now give a BvM result for the sequence of posterior distributions

of the local parameter h :=
√
n(θ− θ∗) as the sample size diverges to infinity. We are assuming in

this result that endogeneity has been neglected. Thus, this is the BvM result under misspecification

of some moments. We denote by ℓ̇n,θ∗ the first derivative of θ 7→ ℓn,θ(w1:n) evaluated at θ∗ and by

λ̈∗,j(θ∗) the d-matrix of second derivatives of θ 7→ λ∗,j(θ) evaluated at θ∗, where λ∗,j(θ) denotes

the j-th component of the d vector λ∗(θ).

Theorem 2.2 (Bernstein-von Mises under neglected endogeneity) Assume that the conditions

of Theorem 2.1 hold. Then, the sequence of posteriors converge in total variation towards a Nor-

mal distribution, that is,

sup
B

∣∣∣π(
√
n(θ − θ∗) ∈ B|w1:n) − N∆n,θ∗ ,Vθ∗

(B)
∣∣∣ p→ 0, (2.12)

where B ⊆ Θ is any Borel set, ∆n,θ∗ := 1√
n

∑n
i=1 Vθ∗ ℓ̇n,θ∗(wi) + op(1) = Op(1), and Vθ∗ is a

positive definite matrix equal to the inverse of:

V −1
θ∗ = EQ∗(θ∗) [w̃1,iw̃

′
i(I + λ∗(θ∗)εiw̃′

i)]
(
EQ∗(θ∗)

[
ε2
i w̃iw̃

′
i

])−1

×
(
2E[w̃iw̃′

1,i] − EQ∗(θ∗) [w̃1,iw̃
′
i(I + λ∗(θ∗)εiw̃′

i)]
)

−
dx∑
j=1

λ̈∗,j(θ∗)E[εixi,j] + VarQ∗(θ∗)[w̃1,iw̃
′
iλ∗(θ∗)],

where VarQ∗(θ∗) denotes the variance taken with respect to the distribution Q∗(θ∗).
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To prove this theorem, in addition to the posterior consistency result stated in Theorem 2.1,

we need to show that
∑n
i=1 ℓn,θ(wi) satisfies a stochastic Local Asymptotic Normality (LAN) ex-

pansion around the pseudo-true value θ∗. This is shown in the Online Appendix by using a proof

that differs from the proof used in Chib et al. (2018) to establish this result. The stochastic LAN

expansion means that the loglikelihood ratio
∑n
i=1 ℓn,θ(wi) − ℓn,θ∗(wi) evaluated at a random local

parameter around the pseudo-true value, is well approximated by a quadratic form.

Theorem 2.2 establishes that as n → ∞ the posterior distribution of
√
n(θ − θ∗) has a shape

more and more similar to the one of a Gaussian distribution. The mean of the Gaussian limiting

distribution is given by a bounded-in-probability stochastic series ∆n,θ∗ which converges in dis-

tribution to a zero-mean Gaussian random variable. As it has been shown in Chib et al. (2018),

∆n,θ∗ =
√
n(θ̂ − θ∗) + oP (1) with θ̂ the frequentist ETEL estimator of Schennach (2007). There-

fore, Theorem 2.2 can be formulated as in the classical formulation with centering of the limiting

distribution
√
n(θ̂ − θ∗).

The asymptotic variance of the posterior distribution of
√
n(θ−θ∗) involves many terms which

are non-zero because in the misspecified case the tilting parameter λ∗(θ∗) evaluated at the pseudo-

true value is non-zero. To understand how the misspecification affects the asymptotic variance of

the posterior distribution, we provide in the corollary below the Bernstein-von Mises theorem for

the case when the exogeneity assumption holds. In this case, we denote by θ◦ the true value of θ

defined as the value that satisfies the moment restriction E[g(wi, θ◦)] = 0. Since P ∈ ⋃
θ∈Θ Qθ

then, θ◦ is equivalently defined as

θ◦ = arg max
θ∈Θ

E log
(

eλ∗(θ)′g(w,θ)

E[eλ∗(θ)′g(W,θ)]

)
. (2.13)

Corollary 2.1 (Bernstein-von Mises under exogeneity) Let θ◦ denote the true value of θ and let

Assumptions 2.2 - 2.6 hold with θ∗ replaced by θ◦, λ∗(θ◦) replaced by zero, and the matrix in

Assumption 2.4 (c) replaced by the matrix E[εi(θ◦)2w̃iw̃
′
i]. Assume that there exists a constant
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C > 0 such that as n → ∞,

P

(
sup

∥θ−θ◦∥>Mn/
√
n

1
n

n∑
i=1

(ℓn,θ(wi) − ℓn,θ◦(wi)) ≤ −CM2
n

n

)
→ 1, (2.14)

where Mn is any sequence of positive constants diverging to infinity. Then the posteriors converge

in total variation towards a Normal distribution, that is,

sup
B

∣∣∣π(
√
n(θ − θ◦) ∈ B|w1:n) − N∆n,θ◦ ,Vθ◦

(B)
∣∣∣ p→ 0, (2.15)

where B ⊆ Θ is any Borel set, ∆n,θ◦ := 1√
n

∑n
i=1 Vθ◦E [w̃1,iw̃

′
i] (E[ε2

i w̃iw̃i])
−1
εiw̃i, and Vθ◦ is the

inverse of V −1
θ◦ := E [w̃1,iw̃

′
i] (E[ε2

i w̃iw̃
′
i])

−1 E
[
w̃iw̃

′
1,i

]
.

The main difference between Corollary 2.1 and Theorem 2.2 concerns the expression for the

asymptotic variance: Vθ0 has a simplified expression compared to Vθ∗ . This simplification is due to

the fact that when the model is correctly specified, that is, when the exogeneity assumption holds,

then the tilting parameter λ∗ evaluated at the true θ◦ is equal to zero: λ∗(θ◦) = 0. This also implies

that Q∗(θ∗) = P . Moreover, E[εiw̃i] = 0. Condition (3.2) has a similar interpretation as (2.9) in

the neglected endogeneity case. Because here the moment restrictions are all correctly specified,

then the alternative condition based on tests requires that for every ϵ > 0 there exists a sequence

of tests {ϕn} such that as n → 0,

E[ϕn] → 0, and sup
{θ;∥θ−θ◦∥≥ϵ}

En

[
eℓn,θ(wi)(1 − ϕn)

]
→ 0. (2.16)

Contrarily to the case with neglected endogeneity, in this case where one correctly assumes that

the covariates x are exogenous, the posterior distribution has the same asymptotic variance as the

efficient Generalized Method of Moments (see Hansen (1982) and Chamberlain (1987)). In addi-

tion, the fact of using the moment restrictions E[εixi] = 0 to construct the posterior distribution

allows to reduce the asymptotic variance when xi is exogenous with respect to the analysis made

by using only the moment restrictions E[εizi] = 0. Indeed, the difference between the asymptotic
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precision of the base model E[g(wi, θ◦)] = 0 and the one of the model E[εizi] = 0 is

a′
(

E[ε2
ixix

′
i] − E[ε2

ixiz
′
i]E[ε2

i ziz
′
i]−1E[ε2

i zix
′
i]
)−1

a,

which is positive definite, where a′ := (E[w̃1,ix
′
i] − E[w̃1,iz

′
i]E[ε2

i ziz
′
i]−1E[ε2

i zix
′
i]). We now pro-

vide an illustrating example.

Example 1 To illustrate the consequences of fitting the base model under misspecification, con-

sider the following data generating process (DGP):

yi = γ0 + xi β + z1i γ1 + εi

xi = δ0 + z1i δ1 + z2i δ2 + ui

z1i = vi

z2i = wi

for i = 1, . . . , n, where n ∈ {250, 500, 1000, 2000}. Suppose that the (ui, vi, wi) are marginally

Gaussian, that εi is marginally a skewed Gaussian mixture 0.5N (0.5, 0.52)+0.5N (−0.5, 1.1182),

that (εi, ui, vi) have a joint distribution induced by a Gaussian copula with covariance matrix

R =
( 1 0.6 0

0.6 1 0
0 0 1

)
and that the covariance of wi with each of the other errors is zero. Also assume

that each parameter is one (except for δ1, which is .5). Under this DGP, z1i is correlated with

εi and xi but since wi is uncorrelated with the other shocks, z2i is a valid instrument that is also

relevant for xi. For each of the four sample sizes, the posterior of θ := (β, γ0, γ1) is calculated

from the four moments

E
[
(yi − xi β − γ0 − z1i γ1)



xi

1

z1i

z2i


]

=



0

0

0

0


.
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The second moment is counter to fact (this is the problem of neglected endogeneity). The ETEL

posterior is sampled by the tailored one-block M-H algorithm for 20000 iterations beyond a burn-

in of a 1000 cycles. The marginal posterior density of β for each sample size is computed from

these MCMC sampled draws. Kernel smoothed versions of the posterior densities are given in

Figure 1. As the sample size increases, the posterior concentrates on a value quite different from

the true value of β.
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Figure 1: Base model under neglected endogeneity: Marginal posterior densities of β for different
sample sizes. Posterior mean is indicated by dashed vertical line.

3 Extended model

We now consider an extended version of the base model that is immune from the problem of

neglected endogeneity. One way to define such a model is by omitting the x moment conditions

altogether. This has two problems, however. First, if x is exogenous, the asymptotic variance of the

parameters is larger than from the base model, as we have shown above. Second, it is not possible

to develop a test of endogeneity by omitting the x restrictions. Therefore, it is necessary to define
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an extended model that achieves immunity from the problem of neglected endogeneity, but does

not omit the x restrictions.

Let v ∈ V ⊆ Rdx be a nuisance parameter of the same dimension as x. Now let

g(wi, θ, v) := εi(θ)


xi

z1i

z2i

−


v

0

0

 ,

where v serves the purpose of inactivating the x restrictions. The extended model can now be

defined by the moment restrictions

E[g(wi, ψ◦)] = 0,

where ψ := (θ′, v′)′ ∈ Ψ is the vector θ augmented by v, Ψ := Θ×V and ψ◦ denotes the true value

of ψ. This model is correctly specified under both exogeneity and endogeneity of xi. Importantly,

this model can be compared with the base model to develop a test of endogeneity, as we show in

the next section.

The ETEL posterior π(ψ|w1:n) emerges in the same way as above with θ now replaced by ψ,

the moment functions g(x, θ) replaced by g(x, ψ), the prior π(θ) extended to π(ψ) = π(θ)π(v)

and the parameter space Θ enlarged to Ψ. The true value of ψ is denoted by ψ◦ and is defined

similarly to θ◦ as the value that satisfies the moment restriction E[g(wi, ψ◦)] = 0 or equivalently

as

ψ◦ = (θ◦, v◦) = arg max
ψ∈Ψ

E log
(

eλ∗(ψ)′g(w,ψ)

E[eλ∗(ψ)′g(w,ψ)]

)
= arg max

ψ∈Ψ
E log

(
eλ∗(ψ)′g(w,θ)

E[eλ∗(ψ)′g(w,θ)]

)
. (3.1)

Since the extended model is always correctly specified, a result similar to the one in Corollary

2.1 can be shown to hold. We have the following BvM result.

Theorem 3.1 (Bernstein-von Mises) Let ψ◦ = (θ◦, v◦) denote the true value of ψ and let Assump-

tions 2.2 - 2.6 hold with θ∗ replaced by ψ◦, λ∗(ψ◦) replaced by zero, and the matrix in Assumption

2.4 (c) replaced by the matrix E[εi(ψ◦)2w̃iw̃
′
i]. Assume that there exists a constant C > 0 such that
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as n → ∞,

P

(
sup

∥ψ−ψ◦∥>Mn/
√
n

1
n

n∑
i=1

(
ℓn,ψ(wi) − ℓn,ψ◦(wi)

)
≤ −CM2

n

n

)
→ 1, (3.2)

where Mn is any sequence of positive constants diverging to infinity. Then the posteriors converge

in total variation towards a Normal distribution, that is,

sup
B

∣∣∣πn(
√
n(ψ − ψ◦) ∈ B|w1:n) − N∆n,ψ◦ ,Vψ◦

(B)
∣∣∣ p→ 0, (3.3)

where B ⊆ Ψ is any Borel set, ∆n,ψ◦ = 1√
n

∑n
i=1 Vψ◦E

[
dg(wi,ψ◦)′

dψ

]
Ω−1
ψ◦

(εiw̃i − ṽ◦), with ṽ◦ :=

(v′
◦, 0′, 0′)′ and v◦ := E[εixi], and Vψ◦ is the inverse of

V −1
ψ◦

= E
[
dg(wi, ψ◦)′

dψ

]
Ω−1
ψ◦

E
[
dg(wi, ψ◦)

dψ′

]

with Ωψ◦ := E [g(wi, ψ◦)g(wi, ψ◦)′] = E[ε2
i w̃iw̃

′
i]−ṽ◦ṽ

′
◦ and E

[
dg(wi,ψ◦)′

dψ

]
= −

E[w̃1ix
′
i] E[w̃1iz

′
i]

Idx 0

.

Note that both Corollary 2.1 and Theorem 3.1 refer to situations where the model is correctly

specified. There is an important difference, however. In the latter case, correctness of the model is

achieved by inactivating the x-moment conditions when this is incorrect.

Remark 3.1 Let us analyze the asymptotic precision matrix V −1
ψ◦

. It is interesting to notice that in

the case where x is exogenous, then v◦ = 0 and the joint distribution of the first p components of

the limiting random vector has variance equal to the asymptotic variance in Corollary 2.1. On the

contrary, in the case where x is endogenous and then v◦ ̸= 0, the variance of the joint distribution

of the first p components of the limiting random vector differs from the asymptotic variance in

Theorem 2.2. A proof of this is provided in the Supplementary Material.

Example 1 (continued) Consider again the fitting of the data that follows the DGP given in Ex-
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ample 1. The extended (correctly specified) moment restricted model is

E
[
(yi − xi β − γ0 − z1i γ1)



xi

1

z1i

z2i


]

=



v

0

0

0



The parameter of interest is now ψ = (β, γ0, γ1, v). We use a default student-t prior on v centered

at the GMM estimate and spread given by 4 times the GMM asymptotic variance. The prior of θ

is the same as in the base model. The ETEL posterior for each of the four different sample sizes

is sampled by the tailored one block M-H method for 20000 iteratations beyond a burn-in of 1000

cycles. The marginal posterior densities of β are given in Figure 2. One can see that the posterior

of β, even for n = 250, is close to the true value of β, and, for n = 2000, is essentially centered

around the true value.
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Figure 2: Extended model (xi moment is inactive): Marginal posterior densities of β for different
sample sizes. Posterior mean is indicated by dashed vertical line.
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4 Bayes factor testing

We now show that we can develop a Bayesian test of endogeneity by comparing the base and

extended models in terms of marginal likelihoods. According to the theory in Chib et al. (2018),

for valid comparisons of moment condition models, the contending models must arise from a

common encompassing model and should have the same number of moment conditions. We have

ensured that this condition is met by including the E[εi(θ)z2,i] = 0 restriction in the base model,

and not excluding the E[εi(θ)xi] = v condition from the extended model.

To describe the test, define the base and extended models of sections 2 and 3 as:

Mb : Qθ :=
{
Q ∈ M; EQ[g(wi, θ)] = 0

}
, θ ∈ Θ

Me : Qe,(θ,v) :=
{
Q ∈ M; EQ[g(wi, θ, v)] = 0

}
, θ ∈ Θ, v ∈ Rdx (4.1)

where M is the set of all probability distributions on Rd+1. In addition, as above, define, for every

θ ∈ Θ, the best element of Q(θ) (best in terms of closeness to P ) as

Q∗(θ) := arginfQ∈Qθ
KL(Q||P ) (4.2)

and, for every ψ ∈ Θ × V , the best element of Qe,ψ as

Q∗
e(ψ) := arginfQ∈Qe,ψ

KL(Q||P ).

Our Bayesian test of endogeneity is given by the Bayes factor of Me versus Mb

BFeb = m(w1:n|Me)
m(w1:n|Mb)

,

where m(w1:n|M) =
∫
p̂(w1:n|M, θ)π(θ)dθ, for M ∈ {Mb, Me}, are the model marginal likeli-

hoods. In our work, we compute these by the method of Chib (1995), as extended to general M-H

chains in Chib and Jeliazkov (2001).
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Intuitively, to see why this test works, note that Mb is correctly specified when x is exoge-

nous and misspecified when x is endogenous; however, Me is correctly specified in both the

cases. Therefore, from Chib et al. (2018), it follows that Mb, which has (d − p) overidentifying

restrictions, versus Me, which has (d − p − dx) overidentifying restrictions, would be preferred

by the Bayes factor when x is exogenous (because it has more overidentifying restrictions than

Me), whereas, Me would be preferred when x is endogenous (because Mb in that case would be

misspecified).

The next theorem, which extends Chib et al. (2018) to the particular case considered here,

establishes consistency of this Bayes factor test, that is, as the sample size increases, model Mb is

selected when x is exogenous and model Me when x is endogenous with probability approaching

one.

Theorem 4.1 Let the Assumptions of Theorems 2.2 and 3.1, and of Corollary 2.1 hold. Let us

consider the comparison of models Mb and Me in (4.1). Then,

lim
n→∞

P (logm(w1:n|Me) > logm(w1:n|Mb)) = 1

if and only if there is no θ such that E[εi(θ)xi] = 0 holds, and the limit is zero otherwise.

As we show in the proof of this theorem, the failure of the necessary and sufficient condition

E[εi(θ)xi] = 0 for any θ, is equivalent to the inequality KL(P ||Q∗
e(ψ)) < KL(P ||Q∗(θ)). Thus, as

in the general result in Chib et al. (2018, Theorem 3.2) for moment condition models, comparing

the log marginal likelihoods of the base and extended models, and selecting the one with the higher

value, in the limit, selects the model that is closest in the KL divergence to the true model.

Example 1 (continued) In the same generating process as Example 1, suppose that (εi, ui, vi)

have a joint distribution induced by a Gaussian copula with covariance matrix R =
(

1 ρ 0
ρ 1 0
0 0 1

)
. The

parameter ρ controls the degree of endogeneity. We let ρ take values in the set from -.5 to .5, in

increments of 0.1. For each value of ρ in this set, we generate 100 samples of size n. For each

sample, we compute the the base and extended models, and calculate the log-marginal likelihoods.
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We then count the number of times the log marginal likelihood of Me exceeds that of Mb. The

results are given Table 1. We can see from this table that even for small values of ρ, our test of

ρ -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

n = 250 100 97 73 25 6 1 6 37 76 96 100
n = 500 100 100 93 64 8 0 17 72 99 100 100
n = 1000 100 100 100 91 28 1 35 98 100 100 100
n = 2000 100 100 100 100 65 1 59 100 100 100 100

Table 1: Model selection frequencies from 100 replications of data simulated from the design in
Example 1. For each combination of n and Cov(ε, u) = ρ, the entries give the number of times
in 100 replications of the data that the log-marginal likelihood of Me exceeds the log-marginal
likelihood of Mb.

endogeneity correctly concludes that the correct model is Me. In contrast, an incorrect test of

endogeneity that compares the base without the z2 restriction with the extended model without

the x condition produces completely erroneous results, with the latter model selected 100% of the

times, even when ρ = 0.

5 Real data examples

5.1 Causal effect of price on automobile demand

We consider the classic problem of automobile demand dealt in Berry, Levinsohn and Pakes (1995).

This problem has recently been revisited by Chernozhukov, Hansen and Spindler (2015), hence-

forth BLP and CHS, respectively. Apart from its intrinsic value, this problem is worth analyzing

because it involves a realistically large number of controls and instruments.

To set up the problem, let yijt denote the log of the ratio of the market share of product i

in market j at time t, relative to an external option, and let xijt denote the potentially endoge-

nous automobile price variable. In the sample data, this variable is demeaned. For controls,

let zijt denote the observed characteristics of the product. In BLP these are taken to be a con-

stant, an air conditioning dummy (air), horsepower divided by weight (hpwt), miles per dol-
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lar (mpd), and vehicle size (space). In our notation, yijt = xijt β + z′
1ijtγ + εi, where z1ijt =

(1,mpdijt, spaceijt, hpwtijt, airijt). BLP used ten instruments, five formed by summing the value

of these five characteristics over other automobiles produced by the same firm and five formed by

summing the above characteristics over automobiles produced by other firms. These form z2ijt. In

revisiting this analysis, CHS augment the original controls with quadratics, and cubics in trend,

mpd, space, hpwt, and all first order interactions, and then used sums of these characteristics as

potential instruments.

In our analysis, we consider both formulations, but in the augmented variant we introduce non-

linear controls by transforming each of trend, hpwt, mpd and space by natural cubic spline basis

functions, each centered at five equally spaced quantile knots (the cubic spline basis functions are

taken from Chib and Greenberg (2010)). We opt for this approach to avoid widely different co-

variate values from parametric quadratic and cubic terms of these covariates. After the imposition

of an identification restriction on the basis expansions, which reduces the number of nonlinear

terms to four for each continuous covariate, the RHS of the augmented outcome model is defined

by x (price) and z1 (consisting of an intercept, sixteen nonlinear covariates, denoted by trendBj,

mpdBj , spaceBj and hpwtBj , for j = 1, . . . , 4, and the air-conditioning dummy). The set of

augmented instruments that form z2 in this augmented model are then constructed as in BLP.

We fit four models to these data: the base and extended models under the controls and in-

struments in BLP, and the base and extended models under the augmented set of controls and

instruments. In the BLP version, the base and extended models contain six and seven parame-

ters, respectively, estimated with the help of ten instruments, while in the augmented variant, the

base and extended models have nineteen and twenty parameters, respectively, estimated from 53

moment restrictions. The n = 2217 observations on (yijt, xijt, z1ijt) are assumed to be a random

sample from the population of automobile products across markets and time. Because it is difficult

to fix priors on the parameters by a priori considerations, we randomly select 15% of the sample

to make training sample priors. In particular, we used the GMM estimate and its standard error

fitted on the training data (model by model) as the prior mean and twice the GMM standard error
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Original BLP (Linear) Augmented BLP (Nonlinear)
Base model (price is exogenous) -14386.81 -14431.86
Extended model (price is endogenous) -14364.59 -14397.67

Table 2: Results from the proposed Bayesian test of endogeneity. The log marginal likelihoods for
the base and extended models under the original BLP model and its augmented variant. Results
based on a training sample prior (using randomly selected 15% of the data) and 10,000 MCMC
iterations (beyond a burn-in of 1000) of a tailored single block M-H algorithm. Logarithm of
marginal likelihoods are computed by the method of Chib (1995) and Chib and Jeliazkov (2001).

as the prior standard deviation. Each model is fit with these priors and the ETEL constructed from

the remaining data by the single block M-H algorithm of Chib and Greenberg (1995). We find

that despite the relatively large numbers of parameters and instruments, this algorithm is both fast

and efficient. The results show that the posterior mean of the coefficient on price is -0.14, with a

95% posterior credibility interval running from -.16 to -.13. The posterior mean is larger in magni-

tude than the OLS estimate originally reported by BLP. Note that the posterior distribution of the

augmentation parameter, v, is concentrated to the right of zero, indicating that the price is likely

endogenous.

For confirmation, we turn to our formal test of endogeneity. The results are reported in Table

2. We can see that the marginal likelihood is larger for the extended models in both the original

BLP and the augmented BLP specifications, supporting the conclusion that price is endogenous.

We conclude this analysis by plotting the posterior distributions of the price coefficient from

each model. The estimated effect of price on automobile demand is larger (in absolute value)

when endogeneity of price is taken into account. Interestingly, the price effect is smaller and more

concentrated in the augmented models, suggesting that some of the excess sensitivity to price

observed in the orginal BLP model is due to the omission of the nonlinear controls. In addition, it

is worth noting that if we were to only fit the base model (which the marginal likelihood confirms

is misspecified in this case) we would miss the fact that incorporating nonlinearities impacts the

posterior distribution.
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Figure 3: BLP models: Marginal posterior distributions of the coefficient on the price variable,
β. Posterior mean and standard deviation of β are -0.089 and 0.004 for the base model with
the original BLP (linear) specification while they are -0.087 and 0.004 with the augmented BLP
(nonlinear) specification. For the extended model, posterior mean and standard deviation of β are
-0.183 and 0.015 for the linear specification and -0.143 and 0.009 for the nonlinear specification.

5.2 Effect of airfares on passenger traffic

The emphasis of the theory and applications in this paper is on situations with a single outcome

variable, however, our framework can be applied more broadly. An important example is clustered,

longitudinal data. Let yi = (yi1, . . . , yiT ) denote T potentially correlated and heteroskedastic

measurements on subject i. The outcome is thus a T × 1 vector, rather than a scalar. Adjusting

the dimensions of the controls and instruments, respectively, suppose that independently across i,

the clustered outcomes follow the linear model yi = Xiβ + Z1,iγ + εi, where Xi is T × dx, Z1,i is

T × dz1 , Z2,i is T × dz2 , and εi is T × 1. Now assume that Z1,i and Z2,i satisfy the clustered data

exogeneity restrictionsE[Z ′
j,iεi(θ)] = 0, j = 1, 2, but that the clustered data exogeneity restrictions

E[X ′
iεi(θ)] = 0 related toXi are in doubt. We can apply our framework to this problem by defining

a base model in which the latter restrictions are imposed, and an extended model that contains the

inactive restrictions E[X ′
iεi(θ)] = v, where v is now a dx × 1 vector of unknown parameters. In

parallel to the approach developed above, the marginal likelihood comparison of these models is a

test for the exogeneity of X .
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As an illustration of this extended set-up, we consider a T = 4 balanced longitudinal data

set on airfares and passenger traffic for the years 1997, 1998, 1999, and 2000 from Wooldridge

(2010). For each year t, t ≤ 4, the data is clustered by route i, i ≤ n = 1149. For each flight route

defined by the origin and destination cities, one has the log of the average number of passengers

per day (lpassen), the log of the average one-way fare in dollars (lfare), the log of the distance in

miles (ldist), and the fraction of the market corralled by the biggest carrier (concen). The model

of interest is lpassenit = β lfareit + γ1trendt + γ2ldistit + εit, where trend is a trend variable

taking values 1, 2, 3, 4, and each of the variables in this regression is mean centered. The goal is to

estimate the price elasticity parameter β, but one is concerned that lfare is possibly endogenous.

In the estimation we assume that concen is a valid instrument (it does not directly appear in the

outcome model and it affects lfare, both reasonable assumptions).

Clustered by route i, we have



lpasseni1

lpasseni2

lpasseni3

lpasseni4


=



lfarei1 1 ldisti1

lfarei2 2 ldisti2

lfarei3 3 ldisti3

lfarei4 4 ldisti4




β

γ1

γ2

+



εi1

εi2

εi3

εi4


,

or compactly as yi = W̃1,iθ + εi, i = 1, 2, . . . , 1149, where θ : 7 × 1 is the unknown parameter of

interest. In this model, the distribution of εi is not specified. Moreover, the elements of εi can be

serially correlated and heteroskedastic in an arbitrary, unknown way.

Now let Zi :=
(
W̃1,i, 1, conceni

)
, i ≤ n, be a 4 × 5 matrix, where 1 is a vector of ones, and

conceni = (conceni1, . . . , conceni4)′ : 4 × 1 is the vector of concen values for route i. In the base

model, lfare is exogenous. The model is defined by the five moments

Mb : E[Z ′
i(yi −Xiθ)] = 05×1
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In the extended model, the lfare moment condition is inactive. Specifically,

Me : E[Z ′
i(yi −Xiθ)] =

 v

04×1


The ETEL-based estimation of these two models makes no assumption about the joint distribution

of the cluster-level errors.

We specify the prior from a training sample. We randomly split the sample into a training

sample (of say 115 clusters, equal to 10% of the total clusters) and an estimation sample (consisting

of the remaining 1034 clusters). We then estimate the base mode on the training sample with a

student-t prior centered on the system wide 2SLS estimate from the training data, sd of 10 and 2.5

degrees of freedom. The posterior mean and sd is calculated from these training data under this

prior. We then take the posterior mean and twice the sd from the training sample fit as the mean

and sd of the prior. This determination of the prior from the training sample is helpful in the fitting,

but, due to the thick tails of the prior, the information brought in by the prior pales in comparison

with the information from the estimation sample.

We sample the posterior in each model by the one-block tailored MCMC algorithm. In the

base model, from 10,000 MCMC draws beyond a burn-in of 1000, we find that the posterior mean

of β is -0.551 and its 95% posterior credibility interval is (-0.683, -0.419). Moreover, computation

shows that log(m(w1:n|Mb) = −7190.222 and log(m(w1:n|Me) = −7191.06, signalling that

lprice in this problem can be viewed as exogenous.

6 Concluding remarks

This paper has developed an analysis of regression models in which the variables of primary inter-

est, the treatment variables, are possibly endogenous (correlated with the regression error). This

endogeneity problem is generally assumed away in the Bayesian literature, but this leads to a seri-

ous misspecification problem since endogeneity, in practice, is the rule, rather than the exception.
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In order to avoid the risk of distributional misspecification, the framework we have developed

relies only on moment restrictions. The analysis in the paper revolves around the study of two

models: the base model, where the exogeneity assumption is enforced, and an extended model,

where the exogeneity moment is included, but is made inactive. The real-data examples discussed

in the paper showcase the practical relevance of the methods.

The paper makes two key contributions. The first is in the study of the large sample behavior

of the posterior distributions in the base and extended models in cases where the exogeneity as-

sumption in the population is true or false. The second is in the development of a Bayesian test

of endogeneity that is based on the marginal likelihoods of the base and extended models. In the

former case, BvM theorems are established and, in the latter, the large sample consistency of the

Bayes factor test is established.

It is important to mention that the approach proposed here can be extended to situations where

the controls are assumed to enter the model nonparameterically. While the finite sample analysis of

such models, after approximating the unknown functions by (say) spline basis expansion methods,

would proceed in much the same way as discussed in this paper, the large sample analysis would

require new developments to account for a growing number of basis function parameters with

sample size. We intend to describe the theory in a future paper.
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A Proofs of the main results

We denote by gi(θ) := g(wi, θ) the moment function evaluated at wi and by λ̂(θ) := λ̂(w1:n, θ)

the tilting parameter. When we omit yi from the vector of the i-th observation we use the notation

w̃i := (x′
i, z

′
i)′, and when in addition we omit z2,i we use the notation w̃1,i := (x′

i, z
′
1,i)′. Moreover,

ĝ(θ) := En[gi(θ)], dgi(θ)/dθ′ = −w̃iw̃′
1,i. We use the notation En[·] := 1

n

∑n
i=1[·] for the empirical

mean. For a probabilityQwe use the notation EQ[·] to denote the expectation with respect toQ and

VarQ the variance with respect toQ. For the true distribution P : E[·] := EP [·]. The log-likelihood

function for one observation wi is denoted by ℓn,θ(wi):

ℓn,θ(wi) := log p̂i(θ) = log eλ̂(θ)′g(wi,θ)∑n
k=1 e

λ̂(θ)′gk(θ)
= − log n+ log eλ̂(θ)′g(wi,θ)

1
n

∑n
k=1 e

λ̂(θ)′gk(θ)

so that the log-ETEL function is ℓn,θ(w1:n) = ∑n
i=1 ℓn,θ(wi) = log∏n

i=1 p̂i(θ) = log p̂(w1:n|θ).

By replacing λ̂(θ) with its true value λ∗(θ) we define:

ℓ∗,θ(w) := log eλ∗(θ)′g(w,θ)∑n
k=1 e

λ∗(θ)′gk(θ) =: log p∗
w(θ) and ℓ∗,θ(w1:n) :=

n∑
i=1

ℓ∗,θ(wi).

The first (resp. second) derivative of θ 7→ ℓn,θ(w1:n) evaluated at a point θ1 is denoted by ℓ̇n,θ1(w1:n)

(resp. ℓ̈n,θ1(w1:n)). Moreover, for a function λ(θ) of θ, define τ i(λ, θ) := eλ(θ)′gi(θ)

En[eλ(θ)′gj(θ)]
, τ †

i (λ, θ) :=
eλ(θ)′gi(θ)

E[eλ(θ)′gj(θ)]
, τ ⋄

i (λ, θ) := eλ(θ)′gi(θ). So, τ i(λ̂, θ) = np̂i(θ) and τ †
i (λ∗, θ) = dQ∗(θ)/dP . We also use

the notation: Ω̌(λ, θ) := En[τ i(λ, θ)εi(θ)w̃iw̃′
i], Ω̌⋄(λ, θ) := En[τ ⋄

i (λ, θ)εi(θ)w̃iw̃′
i], Ω̌†(λ, θ) :=

En[τ †
i (λ, θ)εi(θ)w̃iw̃′

i], Ω⋄
∗(θ) := E[τ ⋄

i (λ∗, θ)εi(θ)w̃iw̃′
i] and Ω†

∗(θ) := EQ∗(θ)[εi(θ)w̃iw̃′
i]. Finally,

MVT refers to the Mean Value Theorem.
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Moreover, we make use of the following identities obtained by taking the total derivative of the

first order condition for λ̂ and for λ∗: ∀θ ∈ Θ,

dλ̂(θ)′

dθ
= En

[
τ i(λ̂, θ)w̃1,iw̃

′
i(I + λ̂(θ)gi(θ)′)

]
Ω̌(λ̂, θ)−1,

dλ∗(θ)′

dθ
= EQ∗(θ) [w̃1,iw̃

′
i(I + λ∗(θ)gi(θ)′)] Ω†

∗(θ)−1,

respectively.

A.1 Proof of Theorem 2.1

Define the events An,1 :=
{
supθ∈Θcn

1
n

∑n
i=1(ℓn,θ(wi) − ℓn,θ∗(wi)) ≤ −CM2

n/n
}

and

An,2 :=
{∫

Θ

p̂(w1:n|θ)
p̂(w1:n|θ∗)

π(θ)d(θ) ≥ e−CM2
n/2
}
.

By (2.9), P (Acn,1) → 0 and by Lemma B.2 in the Supplementary Material, P (Acn,2) → 0. There-

fore, by the law of total expectation

E [π (Θc
n|w1:n)] ≤ E

[
π
(√

n∥θ − θ∗∥ > Mn

∣∣∣w1:n
)∣∣∣An,1 ∩ An,2

]
P (An,1 ∩ An,2) + o(1)

= E

 ∫Θcn e∑n

i=1(ℓn,θ(wi)−ℓn,θ∗ (wi))π(θ)dθ∫
Θ e
∑n

i=1(ℓn,θ(wi)−ℓn,θ∗ (wi))π(θ)dθ

∣∣∣∣∣∣An,1 ∩ An,2

P (An,1 ∩ An,2) + o(1)

≤ e−CM2
nπ(Θc

n)E
(∫

Θ

p̂(w1:n|θ)
p̂(w1:n|θ∗)

π(θ)dθ
)−1

∣∣∣∣∣∣An,1 ∩ An,2

+ o(1)

≤ e−CM2
neCM

2
n/2π(Θc

n) + o(1) = o(1) (A.1)

which proves the result of the theorem.
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A.2 Proof of Theorem 2.2

The proof of this theorem proceeds as the proof of Chib et al. (2018, Theorem 2.2). It depends

on two intermediate results: the posterior consistency result of Theorem 2.1 and the stochastic

LAN expansion (A.2) established in Theorem A.1 below. We prove these two theorems by using

a strategy of proofs different from the one used in Chib et al. (2018) and that is specific for the

setting considered in this paper.

Theorem A.1 (Stochastic LAN under neglected endogeneity.) Let Vθ∗ be as defined in the state-

ment of Theorem 2.2 and assume it is nonsingular. Let Assumptions 2.1 - 2.6 hold. For every

h ∈ Rp let θ := θ∗ + h/
√
n. Then, for every compact set K ⊂ Rp,

sup
h∈K

∣∣∣∣∣log p̂(w1:n|θ∗ + h/
√
n)

p̂(w1:n|θ∗)
− h′V −1

θ∗ ∆n,θ∗ + 1
2h

′V −1
θ∗ h

∣∣∣∣∣ p→ 0 as n → ∞, (A.2)

where θ∗ is as defined in (2.8), V −1
θ∗ := −plimℓ̈n,θ∗(w1:n)/n, h′V −1

θ∗ ∆n,θ∗ := h′
√
n
ℓ̇n,θ∗(w1:n) d−→

N (0, h′H∗h) is bounded in probability and H∗ is a positive definite matrix defined in Lemma B.3

of the Supplementary Material.

Proof. We use a second order MVT expansion applied to θ 7→ ℓn,θ(w1:n) around θ∗ and the first

order condition of λ̂(θ), En

[
eλ̂(θ)′gi(θ)gi(θ)

]
= 0, to get:

ℓn,θ(w1:n) − ℓn,θ∗(w1:n) = (θ − θ∗)′ℓ̇n,θ∗(w1:n) + 1
2(θ − θ∗)′ℓ̈

n,̃θ
(w1:n)(θ − θ∗)

= (θ − θ∗)′dλ̂(θ∗)′

dθ
nĝ(θ∗) + (θ − θ∗)′dĝ(θ∗)′

dθ
λ̂(θ∗)n+ n

2 (θ − θ∗)′d
2[λ̂(θ̃)′ĝ(θ̃)]
dθdθ′ (θ − θ∗)

− n(θ − θ∗)′En

[
τ i(λ̂, θ∗)

dgi(θ∗)′

dθ

]
λ̂(θ) − n

2 (θ − θ∗)′En

[
τ i(λ̂, θ̃)

dgi(θ̃)′

dθ

]
dλ̂(θ)
dθ′ (θ − θ∗)

− n

2 (θ − θ∗)′En

[
τ i(λ̂, θ̃)

dgi(θ̃)′

dθ
λ̂(θ̃)λ̂(θ̃)′dgi(θ̃)

dθ′

]
(θ − θ∗)

− n

2 (θ − θ∗)′dλ̂(θ̃)′

dθ
En

[
τ i(λ̂, θ̃)gi(θ̃)λ̂(θ∗)′dgi(θ̃)

dθ′

]
(θ − θ∗)

+ n

2 (θ − θ∗)′En

[
τ i(λ̂, θ̃)

dgi(θ̃)′

dθ

]
λ̂(θ̃)λ̂(θ̃)′En

[
τ i(λ̂, θ̃)

dgi(θ̃)
dθ′

]
(θ − θ∗)
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for θ̃ = τθ+(1− τ)θ∗ and some τ ∈ [0, 1]. By replacing θ by θ∗ +h/
√
n, so that θ̃ = θ∗ + τh/

√
n

and by using the expression for gi(θ) and its derivative with respect to θ, the previous expression

simplifies as:

ℓn,θ(w1:n) − ℓn,θ∗(w1:n) = h′dλ̂(θ∗)′

dθ

√
nĝ(θ∗) − h′√nEn[w̃1,iw̃

′
i]λ̂(θ∗) + 1

2h
′d

2[λ̂(θ̃)′ĝ(θ̃)]
dθdθ′ h

+
√
nh′En

[
τ i(λ̂, θ∗)w̃1,iw̃

′
i

]
λ̂(θ∗) + 1

2h
′En

[
τ i(λ̂, θ̃)w̃1,iw̃

′
i

] dλ̂(θ̃)
dθ′ h

− 1
2En

[
τ i(λ̂, θ̃)

(
h′w̃1,iw̃

′
iλ̂(θ̃)

)2
]

+ 1
2h

′dλ̂(θ̃)′

dθ
En

[
τ i(λ̂, θ̃)gi(θ̃)λ̂(θ̃)′w̃iw̃

′
1,i

]
h

+ 1
2h

′En

[
τ i(λ̂, θ̃)w̃1,iw̃

′
i

]
λ̂(θ̃)λ̂(θ̃)′En

[
τ i(λ̂, θ̃)w̃iw̃′

1,i

]
h (A.3)

and h′ d2[λ̂(̃θ)′ĝ(̃θ)]
dθdθ′ h = h′∑d

l=1
d2λ̂l (̃θ)
dθdθ′ ĝl(θ̃)h − 2h′ dλ̂(̃θ)′

dθ
En

[
w̃iw̃

′
1,i

]
h, where λ̂l(θ̃) and ĝl(θ) de-

note the l-th components of the vectors λ̂(θ̃) and ĝ(θ), respectively. Let us start by considering

the terms of first order, to which we add and subtract the first order condition for θ∗ (which is

dλ∗(θ∗)′

dθ
E[gi(θ∗)] − E[w̃1iw̃

′
i]λ∗(θ∗) + E[τ †

i (λ∗, θ∗)w̃1iw̃
′
i]λ∗(θ∗) = 0):

h′dλ̂(θ∗)′

dθ

√
nĝ(θ∗) − h′√nEn[w̃1,iw̃

′
i]λ̂(θ∗) +

√
nh′En

[
τ i(λ̂, θ∗)w̃1,iw̃

′
i

]
λ̂(θ) =

h′√n
(
dλ̂(θ∗)′

dθ
ĝ(θ∗) − dλ∗(θ∗)′

dθ
E[gi(θ∗)]

)
− h′√n

(
En[w̃1,iw̃

′
i]λ̂(θ∗) − E[w̃1iw̃

′
i]λ∗(θ∗)

)
+

√
nh′

(
En

[
τ i(λ̂, θ∗)w̃1,iw̃

′
i

]
λ̂∗(θ) − E[τ †

i (λ∗, θ∗)w̃1iw̃
′
i]λ∗(θ∗)

)
=: h′V −1

θ∗ ∆n,θ∗ .

By Lemma B.3 in the Supplementary Material, h′V −1
θ∗ ∆n,θ∗ is asymptotically normal with zero

mean and variance equal to the non-singular matrix h′H∗h whose expression is given in the state-

ment of Lemma B.3.

Now, let us consider the terms of second order in (A.3). Because h is bounded, then θ̃ → θ∗

as n → ∞. Moreover, we use the following limits as n → ∞. (1) By continuity of θ 7→

λ∗(θ) (by Lemma B.5 in the Supplementary Material), and continuity of θ 7→ gi(θ), we have:

λ∗(θ̃) → λ∗(θ∗), and gi(θ̃) → gi(θ∗). (2) By Lemma B.9 then En

[
τ i(λ̂, θ̃)w̃1,iw̃

′
i

]
converges

in probability to E
[
τ †
i (λ∗, θ∗)w̃1,iw̃

′
i

]
. (3) By Lemma B.10 then En

[
τ i(λ̂, θ̃)

(
h′w̃1,iw̃

′
iλ̂(θ̃)

)2
]

33



converges in probability to E
[
τ †
i (λ∗, θ∗) (h′w̃1,iw̃

′
iλ∗(θ∗))2

]
. (4) By Lemma B.11 then

En

[
τ i(λ̂, θ̃)h′w̃1,iw̃

′
iλ̂(θ̃)εi(θ̃)′w̃′

i

]
p−→ E

[
τ †
i (λ∗, θ∗)h′w̃1,iw̃

′
iλ∗(θ∗)εi(θ∗)′w̃′

i

]
.

(5) By combining (2), (4) and Lemma B.6 we have that h′ dλ̂(̃θ)′

dθ

p−→ h′EQ∗(θ∗)[w̃1,iw̃
′
i(I+λ∗(θ∗)gi(θ∗)′)]Ω⋄

∗(θ∗)−1.

Hence, by using these limits the term of second order in (A.3) is equal to:

1
2h

′
d∑
l=1

d2λ∗,l(θ∗)
dθdθ′ E [gi,l(θ∗)]h− h′dλ∗(θ∗)′

dθ
E
[
w̃iw̃

′
1,i

]
h+ 1

2h
′E
[
τ †
i (λ∗, θ∗)w̃1,iw̃

′
i

] dλ∗(θ∗)
dθ′ h

− 1
2E

[
τ †
i (λ∗, θ∗) (h′w̃1,iw̃

′
iλ∗(θ∗))2]+ h′

2
dλ∗(θ∗)′

dθ
E
[
τ †
i (λ∗, θ∗)gi(θ∗)λ∗(θ∗)′w̃iw̃

′
1,i

]
h

+ 1
2h

′E
[
τ †
i (λ∗, θ∗)w̃1,iw̃

′
i

]
λ∗(θ∗)λ∗(θ∗)′E

[
τ †
i (λ∗, θ∗)w̃iw̃′

1,i

]
h+ op(1). (A.4)

By remarking that τ †
i (λ∗, θ∗) = dQ∗(θ∗)/dP , and that E [gi,l(θ∗)] = 0 for every l > dx, the

previous expression can be simplified as

1
2h

′
dx∑
l=1

d2λ∗,l(θ∗)
dθdθ′ E [gi,l(θ∗)]h− h′dλ∗(θ∗)′

dθ
E
[
w̃iw̃

′
1,i

]
h− 1

2h
′VarQ∗(θ∗) [w̃1,iw̃

′
iλ∗(θ∗)]h

+ 1
2h

′EQ∗(θ∗) [w̃1,iw̃
′
i (I + λ∗(θ∗)gi(θ∗)′)] dλ∗(θ∗)

dθ′ h+ op(1)

=: −1
2h

′V −1
θ∗ h+ op(1).

By putting all these elements together we get:

ℓn,θ(w1:n) − ℓn,θ∗(w1:n) = h′V −1
θ∗ ∆n,θ∗ − 1

2h
′V −1
θ∗ h+ op(1),

where h′V −1
θ∗ ∆n,θ∗

d−→ N (0, h′H∗h), h′
√
n
ℓ̇n,θ∗ = h′V −1

θ∗ ∆n,θ∗ + op(1) and V −1
θ∗ = plimℓ̈n,θ∗/n +

op(1). Thus, we obtain the result of the lemma.
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A.3 Proof of Theorem 4.1

In view of Chib et al. (2018, Theorem 3.2) we know that

lim
n→∞

P (logm(w1:n|Me) > logm(w1:n|Mb)) = 1

if and only if KL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗(θ∗)) (remark that θ∗ = θ◦ when xi is exogenous). We

now prove that the latter inequality holds if and only if there is no θ such that E[εi(θ)xi] = 0. The

remaining moment restrictions are always satisfied by assumption.

Suppose that KL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗(θ∗)) and suppose that there exists a θ such that

E[εi(θ)xi] = 0 so that P ∈ Qθ. By Assumption 2.2 with θ∗ replaced by θ◦ then this θ must be equal

to θ◦ which in turn equals θ∗. It follows that P ∈ Qθ∗ and by definition of Q∗(θ∗): Q∗(θ∗) = P

since Q∗(θ∗) is the closest to P , in the KL sense, among all the distributions in Qθ∗ . Hence,

KL(P ||Q∗(θ∗)) = 0. But this contradicts the assumption that KL(P ||Q∗
e(ψ◦)) < KL(P ||Q∗(θ∗)).

Hence, there is no θ such that E[εi(θ)xi] = 0.

We now prove the reverse implication. Suppose that there is no value θ such that E[εi(θ)xi] =

0. Hence, P /∈ Qθ for every θ ∈ Θ which implies P /∈ Qθ∗ and KL(P ||Q∗(θ∗)) > 0. On the other

hand, there exists a unique ψ◦ ∈ Rdx such that P ∈ Qe,ψ◦ since Pe,◦ is always correctly specified.

This implies that KL(P ||Q∗
e(ψ◦)) = 0 and so KL(P ||Q∗

e(ψ◦)) < KL(P ||Q∗(θ∗)).
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