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Abstract

A common assumption in the fitting of unordered multinomial response models
for J mutually exclusive categories is that the responses arise from the same set of J
categories across subjects. However, when responses measure a choice made by the
subject, it is more appropriate to condition the distribution of multinomial responses
on a subject-specific consideration set, drawn from the power set of {1, 2, . . . , J}.
This leads to a mixture of multinomial response models governed by a probability
distribution over the J∗ = 2J−1 consideration sets. We introduce a novel method for
estimating such generalized multinomial response models based on the fundamental
result that any mass distribution over J∗ consideration sets can be represented as a
mixture of products of J component-specific inclusion-exclusion probabilities. More-
over, under time-invariant consideration sets, the conditional posterior distribution
of consideration sets is sparse. These features enable a scalable MCMC algorithm
for sampling the posterior distribution of parameters, random effects, and consider-
ation sets. Under regularity conditions, the posterior distributions of the marginal
response probabilities and the model parameters satisfy consistency. The methodol-
ogy is demonstrated in a longitudinal data set on weekly cereal purchases that cover
J = 101 brands, a dimension substantially beyond the reach of existing methods.
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1 Introduction

A common assumption when fitting unordered multinomial response models, whether ap-

plied to cross-sectional or longitudinal data, is that the responses stem from the same set

of J mutually exclusive categories across all subjects. However, this assumption may be

questionable, especially when modeling the choices made by human subjects. For example,

in fields such as economics and marketing, it is recognized that individuals may select from

only a subset of the available alternatives, termed the “consideration set” (Manski, 1977;

Honka et al., 2019). Neglecting this heterogeneity in the consideration sets can result in

biased parameter estimates in the model (Bronnenberg and Vanhonacker, 1996; Chiang

et al., 1998; Goeree, 2008; Draganska and Klapper, 2011; De los Santos, 2018; Morozov

et al., 2021; Crawford et al., 2021). Such biases are problematic because these models are

typically employed to understand the impact of covariates on outcomes and inform decision

making.

To address this issue, it is necessary to generalize the standard multinomial response

model by conditioning the distribution of responses on a latent subject-specific considera-

tion set, which is drawn from the power set of {1, 2, . . . , J}. This results in a mixture of

multinomial models based on a probability distribution over consideration sets. However,

the exponential size of this power set renders the estimation of this mixture of multinomial

response models computationally infeasible in general.

In order to fix ideas, let Ci represent the latent consideration set for subject i. When J

alternatives are available, Ci is a subset of {1, . . . , J}, and there are J∗ = 2J − 1 possible

consideration sets. A priori, Ci is assumed to be drawn from a probability mass func-

tion Pr(Ci = c). When J is small, the direct approach proposed by Chiang et al. (1998)

is effective. In this approach, all possible consideration sets 1, 2, . . . , J∗ are enumerated
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and assigned unknown probabilities π1, π2, . . . , πJ∗ , which can be estimated using MCMC

methods under a Dirichlet prior. However, when J is large, the model has traditionally

been estimated under the assumption that the distribution over consideration sets is de-

termined by J independent attention probabilities. In this framework, it is assumed that

each alternative appears independently in any given consideration set (Ben-Akiva and Boc-

cara, 1995; Goeree, 2008; Manzini and Mariotti, 2014; Kawaguchi et al., 2021; Abaluck and

Adams-Prassl, 2021). Specifically, let qij denote the probability that subject i considers

the alternative j for j = 1, . . . , J . The probability that Ci = c given qi = (qi1, . . . , qiJ)
′ is

then modeled as:

Pr (Ci = c | qi) =
∏
j∈c

qij
∏
j /∈c

(
1− qij

)
.

Although this model is appealing for handling the large J case, the distribution over con-

sideration sets is unrealistic and leads to model misspecification (Crawford et al., 2021).

In another approach, the consideration sets are modeled as vectors of 0-1 binary vari-

ables (Van Nierop et al., 2010). This vector is then modeled by a multivariate probit model

(Albert and Chib, 1993, Chib and Greenberg, 1998). Although this can generate correlation

of items in consideration sets, inference is challenging because the number of parameters

in the correlation matrix of the multivariate probit model increases quadratically in J .

Given the significant interest in incorporating consideration set heterogeneity in various

fields - such as marketing (Van Nierop et al., 2010; Ching et al., 2014; Kawaguchi et al.,

2021), economics (Goeree, 2008; Ching et al., 2009; Kashaev et al., 2019; Agarwal and

Somaini, 2022), transportation science (Swait and Ben-Akiva, 1987; Paleti et al., 2021), and

psychology (Traets et al., 2022) - there is a pressing need to develop a scalable estimation

approach for estimating such generalized multinomial response models. The importance of

accounting for consideration set heterogeneity becomes even more critical as J increases,
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which is precisely the case that current methods struggle to address. The method we

propose is based on two key components. The first component is a representation of the

probability masses π1, π2, . . . , πJ∗ in terms of a weighted average of products of item-specific

inclusion qj and exclusion 1 − qj probabilities, which is based on a result from Dunson

and Xing (2009). We refer to this approach as a mixture of independent consideration

models. To simulate the latent consideration sets, we introduce a straightforward and

intuitive Metropolis-Hastings algorithm. It is important to highlight that, in this context,

the consideration sets are latent, unlike in Dunson and Xing (2009), where the categorical

variables are observed. This difference necessitates additional steps in both the theoretical

derivations and the computational procedure. Another crucial feature of the method is the

sparsity of the posterior distribution of the consideration sets, which occurs because sets

that do not include the actual choices made by a subject must have a posterior probability

of zero (Chiang et al., 1998). The scalability of the proposed approach is demonstrated

through an application to marketing data involving J = 101 brands.

We establish two key theoretical results. First, under regularity conditions, as the num-

ber of subjects increases, we demonstrate that the posterior distribution of the marginal

response probabilities is consistent. Second, under certain additional identification assump-

tions, the posterior distribution of the model parameters also achieves consistency.

In general, this paper contributes to the expanding literature on high-dimensional de-

mand estimation in statistics and marketing: (Braun and McAuliffe, 2010; Chiong and

Shum, 2019; Smith and Allenby, 2019; Loaiza-Maya and Nibbering, 2022; Jiang et al.,

2024; Iaria and Wang, 2024; Ershov et al., 2024; Amano et al., 2018). Moreover, the pro-

posed method can be interpreted as a generalized multinomial logit (MNL) model, with

“structural zeros” incorporated in the first layer of its hierarchical structure. In the field
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of biostatistics, methodologies have been extensively explored to estimate microbial com-

positions that account for the sparsity due to excessive zero counts (e.g. Aitchison, 1982;

Mart́ın-Fernández et al., 2015; Liu et al., 2020; Cao et al., 2020; Paulson et al., 2013;

Chen and Li, 2016; Tang and Chen, 2019). More recently, Zeng et al. (2023) introduced

a zero-inflated probabilistic PCA model designed for high-dimensional, sparse microbiome

data sets. Although our paper focuses on a different problem, the proposed method has

the potential to be applied in similar contexts, particularly in scenarios where structural

zeros exhibit complex dependency patterns.

The remainder of the paper is organized as follows. Section 2 introduces the model, and

Section 3 establishes theoretical results. Section 4 considers the prior-posterior distribution.

Section 5 develops the approach to posterior computation. Section 6 presents numerical

simulations. An application to a marketing data set is given in Section 7.

2 The approach

Suppose that we have panel (longitudinal) data with n a priori independent subjects that

contains multinomial (polychotomous) responses from a set J = {1, . . . , J} of J mutually

exclusive nominal categories/items as well as some covariates. Let Yit ∈ J be the measured

response for unit i at time t, where i = 1, . . . , n and t = 1, . . . , Ti. Let ωit = {ωijt}j∈J ,

where ωijt is the vector of covariates characterizing the category j for subject i at time

t. Each subject i is associated with a latent consideration set Ci, which is a subset of

the entire set of alternatives J . We model the distribution of the observed outcomes

using a hierarchical approach. Specifically, we first specify the marginal distribution of

the consideration sets and then define the response distribution conditional on a given

consideration set. In this framework, we make the following assumptions.
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Assumption 1: Consideration sets Ci vary over subjects but not over time, and the

distribution over consideration sets, denoted by πc = Pr(Ci = c) for c ∈ C, the set of all

possible consideration sets minus the empty set, is free of covariates.

The assumption of time invariance is relatively mild and aids in inference. It also plays

a role in the identification of model parameters. Covariates can be included in the model

for consideration sets, but, as noted by Chiang et al. (1998), a covariate-dependent model

is difficult to specify without increasing the risk of model mis-specification.

Assumption 2: For each j ∈ J , the responses Yit of subject i given Ci and random

effects bi are independent over time and follow the multinomial logit model.

Based on Assumptions 1 and 2, the generalized multinomial logit model of interest has

the hierarchical form:

Stage 1: Ci
iid∼ π,

Stage 2: bi
iid∼ N (0,D), (1)

Stage 3: Pr(Yit = j | β,ωit, Ci, bi) =


exp(x′

ijtβ+z′
ijtbi)∑

ℓ∈Ci
exp(x′

iℓtβ+z′
iℓtbi)

if j ∈ Ci

0 otherwise

t = 1, . . . , Ti,

for i = 1, . . . , n, where π = {πc : c ∈ C, 0 ≤ πc ≤ 1,
∑

c∈C πc = 1} denotes the collection

of probabilities associated with all possible consideration sets, and bi are random effects

normally and independently distributed across subjects with zero mean and unknown co-

variance matrix D. The covariates are denoted by ωit = {xijt, zijt}j∈J , where xijt ∈ Rdx

and zijt ∈ Rdz . Stage 1 can be interpreted as introducing another layer of random effects,

where heterogeneity arises from the random consideration sets.

Letting Pr(Yi|θ,ωit, Ci = c) denote the distribution of outcomes Yi = (Y1i, . . . , YiTi
) of

subject i marginalized over the random effects, the distribution of responses takes the finite
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mixture form:

Pr(Yi|θ,ωit) =
∑
c∈C

πc Pr(Yi|θ,ωit, Ci = c),

Note that the number of terms in the summation increases exponentially in J . Also note

that we adopt the logit specification for simplicity, but our approach can in principle be used

with other link functions, such as the probit. However, starting with an alternative link is

not really necessary because the marginal model of the outcomes is already a generalized

multinomial logit due to the mixing over the consideration sets.

Assumptions 1 and 2 imply time-invariant consideration sets, conditional independence

of responses, and full support of the conditional response probabilities on consideration

sets. These conditions, along with additional assumptions detailed below, establish the

point identification of the model parameters (Aguiar and Kashaev, 2024). Furthermore, in

Theorem 2 of Section 3, we demonstrate the posterior consistency of the model parameters

under these assumptions.

2.1 The latent consideration sets

To fix notation, let C represent the collection of all possible consideration sets, which

corresponds to the power set of J = {1, . . . , J}, excluding the empty set. The consider-

ation set for subject i is indicated by Ci = c, where c ∈ C. For example, when J = 3,

C = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}}, and c is one of these elements. Fur-

thermore, by Ci = (Ci1, . . . , CiJ)
′, we mean a J × 1 multivariate binary vector where

Cij = 1 if the category j is in the consideration set and 0 otherwise. In the example of

J = 3, Ci = {1} is equivalent to Ci = (1, 0, 0)′ and Ci = {1, 3} is equivalent to Ci = (1, 0, 1)′

etc. In the following, we use the two notations interchangeably depending on the context.

Researchers sometimes include an outside option in the model that is always considered by
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each subject. We can incorporate this into our framework by adding a (J + 1)th category

and fixing CiJ+1 = 1 for all i. Our goal is to put a probability distribution on C that is rich

enough to accommodate dependencies while maintaining scalability.

2.2 Dimensionality reduction via tensor decomposition

We now review the factor decomposition technique that we employ to specify the distribu-

tion over consideration sets. Dunson and Xing (2009) consider modeling large contingency

tables that, for example, represent DNA sequences, each of which is defined as a collection

of J categorical variables, each having dj possible values j = 1, . . . , J , where J is large.

A realization of the contingency table can be expressed as a vector (a1, . . . , aJ)
′, where

aj ∈ {1, . . . , dj} for j = 1, . . . , J . The true distribution of the contingency tables is a

probability tensor π = {πa1a2···aJ , aj = 1, . . . , dj, j = 1, . . . , J}, where 0 ≤ πa1a2···aJ ≤ 1

and
∑d1

a1=1 · · ·
∑dJ

aJ=1 πa1a2···aJ = 1. Note that consideration sets can be seen as contingency

tables with dj = 2 for all j. Generally, there are a large number of elements in the tensor

π, d1 × · · · × dJ , when J is large. Dunson and Xing (2009) show that π can be expressed

as a finite mixture of rank 1 tensors. We describe this result for the special case that

corresponds to modeling consideration sets.

Lemma 1 (Exact matching of consideration set probabilities). Let π be the probability mass

distribution over the consideration sets: It is a collection of probabilities {πc = Pr (Ci = c) :

c ∈ C}, where 0 ≤ πc ≤ 1 and
∑

c∈C πc = 1. Then there are K ∈ Z+, ω = (ω1, . . . , ωK) ∈

∆K−1, qh = (qh1, . . . , qhJ)
′, h = 1, . . . , K, qhj ∈ [0, 1] such that for each c ∈ C,

πc =
K∑

h=1

ωh

∏
j∈c

qhj
∏
j /∈c

(
1− qhj

) . (2)
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It states that a mixture of K independent consideration models can model an arbitrary

distribution over the J∗ = 2J − 1 possible consideration sets. Within each component h,

items are included in or excluded from a consideration set c according to an independent

consideration model defined by a vector of attention probabilities qh = (qh1, . . . , qhJ)
′.

Therefore, the number of parameters needed to model the probabilities in π is reduced

from J∗ to K×J+(K−1), which scales linearly with J , providing the basis for scalability.

2.3 Infinite mixture of independent consideration models

Building on this result, we model the J-dimensional latent vectors {Ci} via a mixture of

independent probabilities. In practice, the number of components K in (2) is unknown.

To overcome this issue, following Dunson and Xing (2009), we use a Dirichlet process (DP)

prior (Ferguson, 1973), to induce an infinite mixture model. It is important to empha-

size that our problem differs from Dunson and Xing (2009) in the sense that while the

categorical variables (contingency tables) are observed in their paper, the corresponding

objects (the consideration sets) are latent in the current problem. This distinction intro-

duces additional challenges both in the theory in Section 3 and in computation, since now

an efficient algorithm is required to sample the latent consideration sets efficiently even

in high-dimensional scenarios; see our proposed approach in Section 5. An alternative

approach that begins by estimating K could offer computational advantages. However, ex-

isting methods for consistently estimating K, such as those proposed by Kwon and Mbakop

(2021), may not be directly applicable in our context, where the variables modeled by the

mixture are latent. In contrast, our posterior consistency results only require that the prior

on K has positive mass for all positive integers. This flexibility allows for posterior infer-

ence on model parameters and their functions (e.g., predictions) to automatically account
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for uncertainty regarding the value of K.

We now describe our approach. Assume that {Ci} is i.i.d. with density f( · |G) =∫ ∏J
j=1 q

Cij

j (1− qj)
1−Cij dG(q). The discrete mixing distribution G is modeled by a DP

prior with a concentration parameter α and a specified base probability measure G0 that

depends on a hyperparameter ϕ
q
. Equivalently, by using the stick breaking construction

(Sethuraman, 1994), we have the following representation: Ci’s are i.i.d. with the density

for the infinite mixture of independent consideration models:

Pr(Ci = ci) =
∞∑
h=1

ωh

J∏
j=1

{
q
cij
hj (1− qhj)

1−cij
}
, (3)

where ci = (ci1, . . . , ciJ)
′, ω1 = V1, ωh = Vh

∏
ℓ<h(1 − Vℓ), h = 2, . . . ,∞, Vh

iid∼ Beta(1, α),

and qh
iid∼ G0( · |ϕq

), h = 1, . . . ,∞, with qh = (qh1, . . . , qhJ)
′ being the vector of attention

probabilities specific to the component h. A priori, the first few weights dominate and

cover most of the probability mass, which are then adjusted by the data. Although the

model (3) includes infinitely many components, typically only a small number of distinct

values for qh are imputed.

For the baseline distribution G0, we assume that qhj ∼ G0j independently for j =

1, . . . , J and h = 1, . . . ,∞. Specifically, we assume that qhj ∼ Beta(aqj , bqj), independently

over j = 1, . . . , J , for h = 1, . . . ,∞, and we define ϕ
q
= (aq, bq) with aq = (aq1 , . . . , aqJ )

′

and bq = (bq1 , . . . , bqJ )
′. Note that ϕ

q
= (aq, bq) are the hyperparameters chosen by the

user. We discuss this in more detail in the Supplementary Material. We complete the

model specification by assuming the prior distribution for the DP concentration parameter

α ∼ Gamma(aα, bα), where (aα, bα) are the hyperparameters chosen by the user. For

smaller values of α, ωh decreases toward zero more rapidly as h increases, so that the prior

favors a sparse representation with most of the weight on a few components. We allow the
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data to inform us about α and, therefore, an appropriate degree of sparsity.

3 Theoretical results

In this section, we establish posterior consistency results under the proposed approach. For

simplicity, let Ti = T , ∀i. We consider the framework where T ≥ 1 is fixed and n → ∞.

Theorem 1 states that the posterior of the marginal response probabilities is consistent, and

in Theorem 2, we establish that the posterior of the model parameters is consistent when T

is large enough and the model does not include random effects. Let θ = {β,D} denote the

parameters in the response model. Also, recall that the distribution over the consideration

sets is denoted by π = {πc : c ∈ C}, where 0 ≤ πc ≤ 1 and
∑

c∈C πc = 1. Define the

probability that the sequence of items y = (y1, . . . , yT )
′ ∈ J T is chosen conditional on

covariates wi = {wi1, . . . ,wiT} taking some specific value w = {w1, . . . ,wT} ∈ RTJ(dx+dz):

pθ,π(y|w) ≡
∑
c∈C

πc Pr (Yi = y|θ,w, c) ,

where the response probability given a consideration set c is

Pr(Yi = y|θ,w, c) =

∫ T∏
t=1

Pr(Yit = yt | β,wt, Ci = c, bi)ϕ(bi|0,D)dbi,

where the integrand is defined in (1). The data set contains responses yi = {yit} and

covariates wi = {wit}: Dn = {(yi,wi) : i = 1, . . . , n}. The covariates wi are i.i.d. and

follow an unknown distribution with density g∗ with support W ⊂ RTJ(dx+dz). We do not

model the covariate distribution. Conditional on covariates, responses are generated from

the collection of the data-generating response probabilities p∗ = {pθ∗,π∗(y|w)}y∈J T ,w∈W ,

where θ∗ denotes the true response model parameter and π∗ = {π∗
c : c ∈ C} denotes the
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true probability mass function over consideration sets. We emphasize that π∗ does not

have to be a finite mixture. The joint probability measure implied by p∗ and g∗ is denoted

by F0. For ε > 0, define a Kullback-Leibler neighborhood of p∗ as

KLε(p
∗) =

(θ,π) :

∫ ∑
y∈J T

log

(
pθ∗,π∗(y|w)

pθ,π(y|w)

)
pθ∗,π∗(y|w)g∗(w)dw < ε

 .

It is essentially a set of (θ,π) that makes pθ,π close to pθ∗,π∗ .

Given a K ∈ Z+, define ϕ1:K = {ωh, qh : h = 1, . . . , K}, the collection of all component-

specific parameters, where qh = (qh1, . . . , qhJ)
′. Note that by Lemma 1, there exist

{K, ϕ̃1:K}, which may not be unique, such that π∗
c =

∑K
h=1 ω̃h

{∏
j∈c q̃hj

∏
j /∈c
(
1− q̃hj

)}
,

for all c ∈ C, and the KL divergence is zero at {θ∗, K, ϕ̃1:K}. In the following lemma, we

establish that the KL divergence can be made arbitrarily small in sufficiently small neigh-

borhoods of (θ∗, ϕ̃1:K). Define the model induced probability for a consideration set c ∈ C:

π(c|K,ϕ1:K) =
∑K

h=1 ωh

∏
j∈c qhj

∏
j /∈c(1 − qhj), and the model induced marginal response

probability as

p(y|w;θ, K,ϕ1:K) =
∑
c∈C

π(c|K,ϕ1:K) Pr(Yi = y|θ,w, c).

Lemma 2. Suppose: (i) β∗ ∈ interior(B), where B is a compact subset of Rdx and D∗ is

positive definite, and (ii) W is compact. Then ∀ε > 0, ∃ an open neighborhood O of θ∗,

K ∈ Z+, and an open neighborhood PK such that for any θ ∈ O and ϕ1:K ∈ PK,

∫ ∑
y∈J T

log

(
pθ∗,π∗(y|w)

p(y|w;θ, K,ϕ1:K)

)
pθ∗,π∗(y|w)g∗(w)dw < ε.

The proof can be found in Appendix. Let Π(·) denote the prior for the response model
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parameter θ and the distribution of consideration sets π.

Theorem 1. Suppose conditions (i) and (ii) of Lemma 2. Suppose (iii) for any open

neighborhood O of θ∗, and for any K,ϕ1:K, and an open neighborhood PK of ϕ1:K, Π(θ ∈

O,ϕ1:K ∈ PK , K) > 0. Then, for all weak neighborhood U of p∗, as n → ∞, Π(U|Dn) →

1 a.s. F∞
0 .

Proof of Theorem 1. By Schwartz’s theorem (Ghosal and van der Vaart, 2017, ch.6), the

result follows if we show that Π(KLε(p
∗)) > 0. By Lemma 2, there exist open neigh-

borhoods O and PK on which the KL divergence can be made sufficiently small. The

lemma combined with a prior that places positive mass on open neighborhoods (condition

iii) implies that Π(KLε(p
∗)) > 0.

It states that asymptotically, the posterior converges in a sense that the model-induced

response probability is consistent with the true data-generating counterpart. A similar

result is obtained in Theorem 2 of Dunson and Xing (2009), but in the context of observed

categorical variables and no covariates. In contrast, in our more general setup, we have

latent categorical variables (consideration sets) in the first layer of the hierarchical model

(1), which must be integrated out, and covariates are also present. These differences add

to the complexity of the theoretical analysis, requiring additional steps to prove posterior

consistency, such as the need to incorporate the KL-divergence in the analysis (Lemma 2).

In the context of semiparametric estimation of dynamic discrete choice models, Norets

and Shimizu (2024) obtained a similar result. Our proof strategy is similar, but different,

due to the presence of random effects, continuous covariates, a different model, and also

the need to work with the KL-divergence. The compactness assumption (ii) is common in

Bayesian nonparametric estimation. Condition (iii) of Theorem 1 is satisfied by our prior:

the DP prior for ωh’s and the Beta prior for qhj’s as shown by Dunson and Xing (2009).
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Theorem 1 establishes posterior consistency in terms of marginal response probabilities.

However, there could be multiple pairs of (θ,π) that are consistent with the true response

probabilities. This issue of partial identification has attracted much attention recently

(Masatlioglu et al., 2012, Cattaneo et al., 2020, Barseghyan et al., 2021a, Lu, 2022), and

some articles have studied conditions/setting in which the model is point-identified (Dar-

danoni et al. (2020), Abaluck and Adams-Prassl, 2021, Barseghyan et al., 2021b). Aguiar

and Kashaev (2024) provide conditions under which the distribution of consideration sets

and the conditional response probabilities are non-parametrically identified when there are

no random effects (i.e. θ = β) and consideration sets are time-invariant. We employ one

of their identifying conditions: the panel is “long enough” so that one can pin down the

two sources of variation in responses.

The next theorem builds on this identification result and establishes that our posterior

distribution is consistent in the sense that it contracts to within arbitrarily small ball

around (β∗,π∗) given by the following distance function: d((β,π), (β′,π′)) = max{||π −

π′||1, ||β−β′||2}. The difference from Theorem 1 is that the added identifying assumption

enables us to conclude that the posterior is consistent for (β∗,π∗) rather than for the

marginal response probability pβ∗,π∗ .

Theorem 2. In addition to the assumptions in Theorem 1, suppose that β ∈ B ⊆ Rdx,

where B is compact, and that the number of periods T is such that the largest integer

that is smaller than or equal to T−3
2

is larger than J . Then, ∀ε > 0, as n → ∞,

Π((β,π) : d((β,π), (β∗,π∗)) < ε|Dn) → 1 a.s. F∞
0 .

Proof of Theorem 2. The proof is by Schwartz’s theorem. The identification assumption to-

gether with Assumptions 1-2 ensures that pβ,π ̸= pβ′,π′ whenever (β,π) ̸= (β′,π′) (Aguiar

and Kashaev, 2024). Identifiability, continuity of pβ,π in (β,π) for the total variation norm
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(Lemma SA.3), and compactness of the parameter space ensure the existence of consistent

tests (Van der Vaart, 2000, Lemma 10.6). The approximation result (Lemma 2) with-

out random effects can be established as a special case, and together with the regularity

conditions on the prior distribution, the KL-support condition holds.

The differences from Aguiar and Kashaev (2024) include the fact that the authors

work with a more general nonparametric setting for the conditional response distribution

given consideration sets while we impose the logistic specification. Another point is that

inferential framework is not available in their paper while one can easily conduct inference

of model parameters and their functions using the posterior distributions in our approach.

4 Inference

4.1 Data structure

Let Yi = (Yi1, . . . , YiTi
)′ and yi = (yi1, . . . , yiTi

)′ be the sequence of random responses made

by unit i over Ti periods and its observed counterpart. Let ωi = (ω′
i1, . . . ,ω

′
iTi
)′ be the

covariates for the subject i observed over time. Define

p(Yi = yi|β, bi,ωi,Ci) =

Ti∏
t=1

Pr(Yit = yit|β, bi,ωit, Ci), (4)

where Pr(Yit = yit|β, bi,ωit, Ci) is

Pr(Yit = j|β, bi,ωit, Ci) =
exp

(
x′
ijtβ + z′

ijtbi
)∑

ℓ∈Ci exp (x
′
iℓtβ + z′

iℓtbi)
if j ∈ Ci, and 0 otherwise. (5)

Note that Ci is the conditioning variable on the left side of (4), while Ci is on the right side.

Although the two objects represent the same information, the J-dimensional vector Ci is
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easier to use when we discuss posterior sampling of individual consideration sets. Hence, we

use Ci to define the individual’s contribution to the likelihood. Let Y = {Y1, . . . ,Yn} and

y = {y1, . . . ,yn} denote the random and observed sequences of the responses made by all

units, and let ω = {ω1, . . . ,ωn} be the observed covariates. Then the likelihood conditional

on the common fixed-effects β, the random effects b = (b1, . . . , bn)
′, the covariates ω, and

the latent consideration sets C = (C1, . . . ,Cn) is given by

p(Y = y|β, b,ω,C) =
n∏

i=1

p(Yi = yi|β, bi,ωi,Ci). (6)

We complete the model by specifying standard prior distributions for the parameters

in the response model: β ∼ Ndx

(
0,V β

)
and D−1 ∼ Wishart (v,R), indepdently, a normal

distribution for β, and an inverse Wishart distribution for D with degrees-of-freedom

parameter v and scale matrix R. The hyperparameters (V β, v,R) are chosen by the user.

4.2 Posterior distribution

For the mixture model on the latent consideration setsC = (C1, . . . ,Cn), let Si ∈ {1, 2, . . .}

be the latent cluster assignment such that Cij|Si = h ∼ Bernoulli(qhj), independently

j = 1, . . . , J , for i = 1, . . . , n. We have the latent consideration sets C, the common

fixed-effects β, the random effects b, the corresponding covariance matrix D, the DP

parameters V = (V1, V2, . . .) as well asQ = (q1, q2, . . .), the DP cluster assignment variables

S = (S1, . . . , Sn), and the DP concentration parameter α. Let π(·) denote the prior density.

Then, from the Bayes theorem, the posterior density of interest is

p
(
C, S,V ,Q, α,β, b,D

∣∣y,ω) ∝ p
(
y
∣∣β, b,ω,C

)
· p(β, b,D) · p

(
C,S,Q,V , α

)
, (7)
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where the first term is given by (6) and only the last term is associated with the DP prior.

5 Computation

MCMC methods can be applied to efficiently sample the posterior distribution. The algo-

rithm we present is scalable and is constructed from simple and intuitive steps. Posterior

inferences are based on the sample of draws produced by the algorithm. The posterior sam-

ple consists of {V (g)
h }, {q(g)

h }, {S(g)
i }, α(g),

{
C

(g)
i

}
, β(g),

{
b
(g)
i

}
, and D(g) for g = 1, . . . , G,

where G is the number of MCMC draws (beyond a suitable burn-in).

5.1 Simulation of consideration sets

We now focus on sampling the conditional distribution of consideration sets. The other

steps in the MCMC simulation follow from standard calculations and are given in the

Supplementary Material. From Equation (7), the full conditional distribution of Ci is

π(Ci|β, bi, qSi
, Si,yi,ωi) ∝ p

(
Yi = yi

∣∣β, bi,ωi,Ci

)
·

J∏
j=1

q
Cij

Sij
(1− qSij)

1−Cij , (8)

where the proportionality sign is with respect to Ci, and the first term is defined in (4).

Importantly, consideration sets that exclude any observed response made by subject i

receive zero posterior probability (see Table 1 for an example). This is because the first

term on the left-hand side of (8) is zero for these consideration sets. This desirable feature

of our approach is based on Chiang et al. (1998). In contrast, in many existing methods,

every consideration set receives a strictly positive probability, as pointed out by Crawford
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et al. (2021). Now, due to the independence structure in (8) over j = 1, . . . , J ,

π(Cij|Ci \ {j},β, bi, qSi
, Si,yi,ωi) ∝ p

(
Yi = yi

∣∣β, bi,ωi,Ci

)
· qCij

Sij
(1− qSij)

1−Cij ,

where Ci \ {j} denotes Ci without the coordinate j. To sample from this distribution, we

employ the Metropolis-Hastings (M-H) algorithm (Chib and Greenberg, 1995). An effective

implementation of this approach is detailed in Algorithm 1.

Algorithm 1: M-H step for Sampling Consideration Sets

Input: The current draws at the gth iteration{
C

(g)
i

}
, {q(g)

h }, {S(g)
i = h},β(g),

{
b
(g)
i

}
Output: The updated consideration sets

{
C

(g+1)
i

}
for i ∈ {1, . . . , n} do

for j ∈ {1, . . . , J} do

1) Propose C̃ij ∼ Bernoulli(q
(g)
hj ) and define

C
(1)
i = (C

(g+1)
i1 , . . . , C

(g+1)
ij−1 , C̃ij, C

(g)
ij+1, . . . , C

(g)
iJ )′

2) Accept C̃ij with probability

min

{
p
(
Yi = yi

∣∣β(g), b
(g)
i ,ωi,C

(1)
i

)
p
(
Yi = yi

∣∣β(g), b
(g)
i ,ωi,C

(0)
i

) , 1} ,

where C
(0)
i = (C

(g+1)
i1 , . . . , C

(g+1)
ij−1 , C

(g)
ij , C

(g)
ij+1, . . . , C

(g)
iJ )′.

Otherwise, set C
(g+1)
ij = C

(g)
ij

In Step 1 of Algorithm 1, we generate a proposal from a one-dimensional Bernoulli

distribution. In Step 2, given the current state C
(0)
i and the proposed state C

(1)
i , the

acceptance probability is computed as the ratio of the likelihood contributions for subject

i. This Metropolis-Hastings step is valid because the likelihood p
(
Yi = yi | β, bi,ωi,Ci

)
is uniformly bounded. See Chib and Greenberg (1995) (p. 330, “the third algorithm”) for

more discussion. In practice, we update the states in a random order within each MCMC

iteration. In addition, the computational burden is minimized by parallelizing the loop
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on the n subjects. Finally, the proposed Metropolis-Hastings step exhibits an important

“sparsity property,” which is elaborated on in the Supplementary Material.

5.2 Numerical illustration

We illustrate posterior probabilities on consideration sets in our approach, using a synthetic

panel data with n = 100 subjects with time periods T ∈ {1, 2, . . . , 10}. Let J = 4 so that

it is possible to present all the the 2J − 1 = 15 consideration sets as in the first column

of Table 1. The table also shows the posterior probabilities of the consideration sets for a

randomly chosen subject i = A whose true consideration set is C∗
A = {1, 3, 4}.

Table 1: Posterior probability of consideration sets for the unit i = A
T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

{1} 0.074 0 0 0 0 0 0 0 0 0
{2} 0 0 0 0 0 0 0 0 0 0
{3} 0 0 0 0 0 0 0 0 0 0
{4} 0 0 0 0 0 0 0 0 0 0
{1, 2} 0.06 0 0 0 0 0 0 0 0 0
{1, 3} 0.167 0.593 0.832 0.837 0 0 0 0 0 0
{1, 4} 0.062 0 0 0 0 0 0 0 0 0
{2, 3} 0 0 0 0 0 0 0 0 0 0
{2, 4} 0 0 0 0 0 0 0 0 0 0
{3, 4} 0 0 0 0 0 0 0 0 0 0
{1, 2, 3} 0.13 0.136 0.071 0.069 0 0 0 0 0 0
{1, 2, 4} 0.045 0 0 0 0 0 0 0 0 0
{1, 3, 4} 0.251 0.179 0.077 0.079 0.8 0.88 0.855 0.931 0.951 0.964
{2, 3, 4} 0 0 0 0 0 0 0 0 0 0
{1, 2, 3, 4} 0.211 0.092 0.02 0.015 0.2 0.12 0.145 0.069 0.049 0.036

yiT 1 3 1 1 4 1 1 4 1 4
Acc.Rate. 0.885 0.819 0.814 0.757 0.64 0.648 0.646 0.674 0.673 0.683

The results are based on a synthetic panel data with J = 4 and n = 100. The true consideration set
is C∗

A = {1, 3, 4}. The row yA,T shows the actual response made by subject A at time T . Acc. Rate
denotes the acceptance rate of consideration sets in the M-H step.

The first column (T = 1) shows the results for the first period at which the subject’s

response was 1. The consideration sets that do not contain the item 1 receive a posterior

probability of zero. With one period, the posterior support has been already reduced from

15 points to 8, which is a desirable feature of our approach. In the second period, the

subject’s response was 3, and the posterior support in the column (T = 2) is now only 4.

As T increases, the posterior concentrates at the true consideration set {1, 3, 4}.
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6 Monte Carlo Simulation

We demonstrate the performance of the proposed approach through simulation studies,

starting with a small number of alternatives (J = 4). This allows for the enumeration of all

possible consideration sets, making it easier to present the results. In addition, a simulation

study with J = 100 is provided in the Supplementary Material, and we further demonstrate

the scalability of our approach in an application involving J = 101 alternatives.

Our goal is to empirically validate the findings of Theorem 2 and demonstrate that

the proposed approach can effectively assess consideration dependence. We consider a

balanced panel where Ti = T = 3 for all i. Although this panel length is smaller than the

requirement in Theorem 2, it still demonstrates good convergence. To simulate the data,

we first specify the distribution of the consideration sets π∗ = {π∗
c = Pr(Ci = c) : c ∈ C}.

We assume that product consideration is segmented and dependent so that the first two

and the last two products are more likely to be considered together, each with a relatively

high probability: π∗({1, 2}) = π∗({3, 4}) = 0.25. As motivation, the first two products

could be seen as “non-vegetarian options,” and the last two as “vegetarian.” The other

consideration sets are assigned the same small probability of 0.0385. Figure 1 shows π∗ in

red. Note that the true π∗ itself is not defined as a finite mixture, but in the fitting, we use

the infinite mixture model. The true consideration sets C∗
i , for i = 1, . . . , n are generated

from this π∗. We then generate outcomes from the logit model with Vijt = δ∗j + β∗xijt,

where (δ∗1, δ
∗
2, δ

∗
3, δ

∗
4)

′ = (0.5,−0.5, 0.3, 0)′ and β∗ = 1, and xijt
iid∼ N(0, 1).

6.1 Consistency

We compare the performance between the proposed infinite mixture of independent consid-

eration models (K = ∞) and the model that assumes independent consideration (K = 1).
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The analysis is repeated 50 times. Table 2 shows that as n increases, the posterior dis-

tribution of both the response parameter β = (δ1, δ2, δ3, β) and the distribution of the

consideration sets π converges to the true values, under the proposed model (K = ∞). In

contrast, when K = 1, we do not observe sufficient evidence of posterior consistency. In

particular, MSEs are an order of magnitude larger in some cases than those under K = ∞,

due to misspecification.

Table 2: Simulation results with J = 4
β δ1 δ2 δ3 π

K = ∞ n = 50 0.07 ( 0.23 ) 0.507 ( 0.66 ) 0.503 ( 0.66 ) 0.173 ( 0.45 ) 0.491 ( 0.03 )
n = 200 0.012 ( 0.11 ) 0.151 ( 0.34 ) 0.125 ( 0.35 ) 0.048 ( 0.24 ) 0.294 ( 0.02 )

K = 1
n = 50 0.047 ( 0.21 ) 1.813 ( 0.67 ) 1.597 ( 0.69 ) 0.199 ( 0.45 ) 0.754 ( 0.03 )
n = 200 0.023 ( 0.09 ) 2.471 ( 0.3 ) 2.382 ( 0.31 ) 0.048 ( 0.22 ) 0.733 ( 0.02 )

For β and δ, we show the averages of the mean squared errors (MSEs) based on 50 replications, using the posterior
means as point estimators. For π, we show the average of L1 norm between the posterior mean and π∗. The
average posterior standard deviations are in parentheses.

The vertical axes of Figure 1 list the 15 consideration sets, with the true distribution

of the consideration sets, π∗, highlighted in red. Each panel of the figure displays the

posterior mean (solid with dots, blue) along with the 95% credible intervals (dashed, blue),

based on one realized data set. The first two panels illustrate that under the proposed

approach (K = ∞), as the sample size n increases, the discrepancy between the posterior

mean and the true distribution diminishes. In contrast, the two right panels show that

when K = 1, even as n increases, the posterior does not adequately converge to the truth.

This is because the model does not account for the true consideration dependence.

In the Supplementary Material, we conduct experiments with random effects. This case

is not covered by Theorem 2 of our paper, but the proposed approach is found to deliver

consistent estimates for both θ = (β,D) and π, where D is the covariance matrix of

random effects, but the restrictive approach with K = 1 leads to larger MSEs/biases.
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Figure 1: The true distribution over consideration sets (solid, red), posterior mean (solid with
dots, blue), 95% equal-tailed credible interval (dashed, blue). Each plot is based on one realization
of simulated data. J = 4, T = 3.

6.2 Testing for dependent consideration

From the MCMC output, it is possible to assess the degree of consideration dependence

using the method proposed by Dunson and Xing (2009), but now applied to the latent

consideration sets. The null hypothesis tests for independent consideration, formulated

as H0 : ω1 = 1. We utilize the interval null of H0 : ω∗ > 1 − ε with ω∗ = max{ωk : k =

1, . . . , k∗} and ε > 0 is a small value. The Bayes factor in favor of the alternative hypothesis,

H1 : ω
∗ ≤ 1− ε, is defined as Pr(H1|Dn) Pr(H1)

Pr(H0|Dn) Pr(H0)
, which can be estimated using P̂r(H1|Dn), the

portion of the posterior sample such that ω∗ ≤ 1 − ε, and P̂r(H0|Dn) = 1 − P̂r(H1|Dn).

In the simulations and the application, aα = bα = 1/4 is fixed to produce Pr(H0) ≈ 0.5.
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Figure 2: Histograms of estimated posterior probabilities of H1 in each of the 100 simulations
under (a) case 1 (dependent consideration - H1 is true) and (b) case 2 (independent consideration
- H0 is true). ε = 0.1, n = 50.
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We use the current data-generating process as the first case (dependent consideration).

In the second case, the consideration is independent. We generate Cij
iid∼ Bernoulli(γj),

for j = 1, 2, 3 with (γ1, γ2, γ3) = (0.2, 0.15, 0.35) and fix Ci4 = 1, for i = 1, . . . , n. Figure

2 (a) provides a histogram showing the estimated posterior probabilities of H1 under the

first case (H1 is true) across the 100 simulated data sets using ε = 0.1. The method

appropriately assigns a value close to one to Pr(H1|Dn) in most cases, with only 8/100

having an estimated Pr(H1|Dn) < 0.5. Figure 2 (b) provides the results for case 2. The

posterior probability assigned to H1 is close to zero for most simulations. We find similar

results with random effects, as shown in the Supplementary Material.

7 Application to Cereal Consumption in Midwest

7.1 Data Description

In this section, we apply our approach to a manually constructed longitudinal data set that

includes J = 101 cereal brands, which represents a significantly larger number than was

feasible before. For comparison, J was 4 in Chiang et al. (1998), 10 in Van Nierop et al.

(2010), and 5 in Aguiar and Kashaev (2024). We constructed the data set by integrating

Nielsen Consumer Panel data with Retail Scanner Data, focusing on weekly shopping trips

in 2019 in stores operated by a single anonymous retailer primarily based in the United

States Midwest. Although data from 2020 are available, we chose to use the most recent pre-

pandemic year to avoid potential biases introduced by pandemic-related shopping behavior.

This particular retailer was selected because it consistently stocked more than 100 cereal

brands throughout the sample period. Furthermore, we limited our analysis to a single

retailer to prevent inconsistencies in brand definitions between different retailers, which

23



would have required speculative alignment of brand names from various sources. The final

data set includes J = 101 brands and n = 1880 households, covering 25,849 purchases in

239 stores during the 52-week period in 2019. See Figure 3, for the locations of these stores

with relative purchase volumes. The average number of shopping trips per household (Ti)

is 13.7, and the price Pijt of each brand j ∈ 1, . . . , J is represented by a size-weighted

price index constructed from prices at the UPC level. For the analysis, we used the first

10 months of data for the estimation and reserved the last two months for the prediction

outside the sample. Further details on data preparation are provided in the Supplementary

Material.
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Figure 3: Locations of the 239 stores under the chosen retailer. Circle sizes correspond to
purchases (percentages).

Conditional on the consideration set {Ci}, in the most general version of the model, we

enter the fixed effects and random effects in the MNL model Vijt = δj +Pijt(β + bi), where

i ∈ {1, . . . , 1880} indexes households, and t ∈ {1, . . . , Ti} indexes purchase occasions. In

this model, δj represents the brand-specific fixed effect for brand j, with the normalization

δJ = 0. The parameter β is the common fixed effect, and bi ∼ N (0, D) is the random effect
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for household i. We consider four variants of the MNL, differentiated by the inclusion

of random effects and/or consideration set heterogeneity, as detailed in models (1)–(4) of

Table 3. In addition, models (5) and (6) assume an independent consideration structure

(i.e., K = 1). Each of these cases is estimated using the simulation method developed in

Section 4, by omitting the components not present in the full hierarchical model (MNL RC).

7.2 Empirical Results

We obtained 10,000 MCMC draws for each of the six models in Matlab on a desktop

with a 4.9GHz processor and 64GB RAM. Broadly speaking, the estimated parameters

of the response model from the approaches (1)-(4) shown in Table 3 are similar to those

in the literature. For instance, when consideration set heterogeneity is incorporated, the

magnitude of the slope parameter β on price increases and the number of significant brand-

specific terms δj’s decreases (See Table B1 for the list of estimated δj’s), which is consistent

with the previous studies (Stopher, 1980, Swait and Ben-Akiva, 1986, Chiang et al., 1998,

Van Nierop et al., 2010). Moreover, when we control for consideration sets, the posterior

mean of D1/2 decreases, which is in accordance with the literature that finds that the

amount of preference heterogeneity is overestimated if consumer’s limited information is

not accounted for (Chiang et al., 1998, Morozov et al., 2021). The confirmation of these

findings under large J was made possible because of the proposed scalable approach.

Under the independent consideration assumption (K = 1), i.e., (5) and (6), the esti-

mated parameters are similar to the proposed flexible approach i.e., (3) and (4) except that

the estimated D1/2 under (6) is slightly larger than (2), which contradicts with the previous

studies. In general, it is possible that the obtained estimates under K = 1 are biased, as

shown in simulation studies in Section 6. We conduct the test for independent considera-
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Table 3: Estimation results

(1) (2) (3) (4) (5) (6)
MNL MNL R MNL C MNL RC MNL C K1 MNL RC K1

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

Random effects on price
β -0.69*** 0.02 -0.77*** 0.03 -0.73*** 0.02 -0.82*** 0.04 -0.73*** 0.02 -0.85*** 0.04

D1/2 —— —— 0.99 0.02 —— —— 0.96 0.04 —— —— 1.07 0.04

Brand-specific fixed-effects
# of “significant” params. 100 98 76 70 73 68

Computational time
min. per 1,000 MCMC iters. 64 67 122 125 121 122

Test for indep. consid. – – Reject H0 Reject H0 – –

random effects No Yes No Yes No Yes
Consideration sets No No K = ∞ K = ∞ K = 1 K = 1

K = ∞ (K = 1) refers to the proposed infinite mixture of independent consideration models (the model under the independent consideration).
The first panel shows posterior means of the mean β of the random effects on price and the standard deviations D1/2 with their posterior
standard deviations. Three stars indicate that the corresponding 99% credible interval does not include 0. The second panel shows the number of
brand-specific fixed effects whose 95% posterior credible intervals do not include 0 (out of 100 terms). See Table B1 for the estimated δj ’s under
MNL RC. The third panel shows computational time (minutes) on a desktop with a 4.9GHz processor and 64GB RAM. The last panel shows
the results for the test for independent consideration with the null hypothesis H0 : independent consideration. The results are based on 10,000
posterior draws.

tion studied in Section 6. Under both (3) and (4), the estimated posterior probability of

the alternative hypothesis (dependent consideration) is very close to one, and we conclude

that the considerations of cereal products in this particular market are dependent.

7.2.1 Computational time

Table 3 also shows the computational time per 1,000 MCMC draws. The extra burden of es-

timating latent consideration sets using our proposed approach is reasonable. For instance,

when consideration sets are estimated along with random effects, the computational time

roughly doubles (67 mins. for MNL R and 125 mins. for MNL RC). Not surprisingly, com-

pared to the fully flexible estimator, the estimators that assume independent consideration

take less computational time but only slightly.

7.2.2 Estimated parameters in the mixture model

We next investigate the clustering of subjects according to the proposed mixture model.

The posterior mode of the number of nonempty clusters under the full-specification (MNL RC)
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is six. The Supplementary Material shows further estimation results on the number of clus-

ters and the DP concentration parameter α. To understand how households are clustered,

we computed the posterior mean of the event that a given pair of households (i, i′) are

clustered together i.e. {Si = Si′}. This results in a n×n “similarity matrix,” which can be

found in the Supplementary Material.

An examination of how households are clustered reveals interesting points. Take house-

hold A as an example whose actual choices consist of {60, 69, 73}. Define an estimator Ĉi

of the consideration set for household i as the set of brands j whose posterior probability

that Cij = 1 is greater than 0.2658, the prior median of qhj. This results in the estimated

set ĈA = {3, 60, 68, 69, 73, 79, 101}. The upper panel of Table 4 lists the three households

with the highest posterior similarity to subject A. There are several observations.

Table 4: Households clustered with i ∈ {A,B}.
i′ Similarity Chosen brands Estimated Ĉi′

Household i = A
i′ = A 1.00 {60, 69, 73} {3, 60, 68, 69, 73, 79, 101}

i′ = 1340 0.60 {3, 68, 73} {3, 25, 26, 59, 60, 61, 63, 66, 68, 73, 77, 79, 101}
i′ = 818 0.59 {60, 68, 73} {3, 25, 26, 59, 60, 61, 63, 66, 68, 73, 79, 101}
i′ = 1187 0.59 {7, 39, 73} {3, 7, 25, 26, 39, 59, 60, 61, 63, 66, 68, 73, 77, 79, 101}

Household i = B
i′ = B 1.00 {4, 7, 8, 17, 27, 53, 66, 68, 77, 79, 92, 101} {3, 4, 7, 8, 17, 25, 27, 53, 59, 60, 63, 66, 68, 73, 77, 79, 92, 101}
i′ = 566 0.97 {5, 7, 8, 26, 27, 39, 60, 61, 77, 101} {3, 5, 7, 8, 26, 27, 39, 60, 61, 77, 101}
i′ = 31 0.96 {26, 47, 51, 59, 60, 62, 63, 68, 72, 73, 92, 101} {26, 47, 51, 59, 60, 62, 63, 68, 72, 73, 92, 101}
i′ = 50 0.96 {3, 6, 7, 25, 59, 66, 68, 81, 101} {3, 6, 7, 25, 59, 60, 66, 68, 81, 101}

Similarity is defined as the posterior mean of 1{Si′ = Si}, which corresponds to the ith row (equivalently ith column) of the similarity matrix
presented in the Supplementary Material. The estimated consideration set Ĉi is defined as the set of brands j whose posterior probability that
Cij = 1 is greater than 0.2658, the prior median of qhj . The result is from the MNL RC model.

First, the actual choices of the households tend to overlap within a cluster; all four

subjects chose 73. Second, the estimated consideration sets Ĉi′ are similar between house-

holds in a cluster. For example, household A did not choose brands 3 and 68, but other

households did, and they are in ĈA. Third, the stronger the purchase overlap, the higher

the chance of being in the same cluster. The lower panel of Table 4 shows the results for

household B. All of the four households in the cluster purchased at least three from the

brands 7, 8, 27, 66, 68, 77, 92, and 101, and show higher similarity scores (≥ 0.96). In this
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way, our algorithm discovers the probabilistic grouping patterns in the choice data.

7.2.3 Predictive performance

We examine the predictive performance of the model using the last 2 months of the ob-

servations that we keep as an out-of-sample period. Denote the set of subjects who made

purchases during the out-of-sample period by O ⊂ {1, . . . , n}. There are 1079 households

in O. For each i ∈ O, we predict Y f
i = {YiTi+s : s = 1, . . . , hi}, given the newly available

covariates ωf
i = {ωiTi+s : s = 1, . . . , hi}, where hi denotes the forecast horizon for the

subject i. Let yf
i = {yiTi+s : s = 1, . . . , hi} be the actual set of responses for the subject

i ∈ O. The predictive likelihood for this subject is

p(yf
i |y,ω,ωf

i ) =

∫ hi∏
s=1

Pr(YiTi+s = yiTi+s|δ,β, bi,ωiTi+s, Ci)dπ(δ,β, {bi}, {Ci}|y,ω)

≈ 1

G

G∑
g=1

hi∏
s=1

Pr(YiTi+s = yiTi+s|δ(g),β(g), b
(g)
i ,ωiTi+s, C(g)

i ),

where the response probability conditional on a consideration set is given in (5). Figure 4

gives the log-predictive likelihood for each household under the (MNL R) and (MNL RC)

models. This figure shows that including the consideration set heterogeneity generally

improves the predictions. Importantly, this is perhaps the first such predictive comparison

in the large J case, made possible by the scalable procedure developed in this paper. See

Supplementary Material for more discussion on the prediction.

In this empirical section, we demonstrated that the added computational effort of esti-

mating latent consideration sets under the proposed approach is reasonable. The estimated

response model parameters and the improved prediction when consideration set heterogene-

ity is taken into account are consistent with the previous studies, but their confirmation
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Figure 4: Log-predictive likelihoods (circles) for the 1079 households that made purchases in
the out-of-sample period. The x-coordinate of each circle is the log-predictive likelihood under
MNL R, and the y-coordinate is under MNL RC. The he 45-degree line is plotted as a solid line.

was made possible under the large J because of the proposed scalable approach.

8 Conclusion

In this article, we proposed a scalable modeling and estimation scheme for multinomial

response models with uncertain consideration sets. The approach relies on a factor de-

composition technique to flexibly model the distribution over the latent consideration sets.

We showed that our approach can be applied to situations beyond the reach of existing

methods, such as an application with J = 101 brands.

As described in the introduction, the latent consideration set models have been applied

in many fields such as economics, marketing, psychology, and transportation science, but

in the absence of restrictive assumptions such as independence of considerations, its appli-

cation has been limited to data sets with small numbers of alternatives due to the curse of

dimensionality. The methodology proposed in this paper thus provides new opportunities

for empirical researchers in multiple disciplines to estimate large-scale multinomial response

models with latent consideration sets which would otherwise be infeasible.
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A Proof of Lemma 2

Proof of Lemma 2. Recall that pθ,π(y|w) ≡
∑

c∈C πc Pr (Yi = y|θ,w, c) . For any y ∈ J T ,

if pθ∗,π∗(y|w) = 0, the integrand in the KL divergence is log(0)0 which is defined to be

zero. Therefore, without loss of generality, suppose that for all y, there is cy ∈ C that

contains all the elements of y and have π∗
cy > 0. By Lemma 1, we can find a finite

mixture of independent consideration models that exactly matches the true distribution of

consideration sets; i.e. ∃(K, ϕ̃1:K) such that π∗
c =

∑K
h=1 ω̃h

∏
j∈c q̃hj

∏
j /∈c(1− q̃hj) for each

c ∈ C. Hence we have

∫ ∑
y

log

(
pθ∗,π∗(y|w)

p(y|w;θ, K,ϕ1:K)

)
pθ∗,π∗(y|w)g∗(w)dw

=

∫ ∑
y

{
log

(
pθ∗,π∗(y|w)

p(y|w;θ∗, K, ϕ̃1:K)

)
+ log

(
p(y|w;θ∗, K, ϕ̃1:K)

p(y|w;θ, K,ϕ1:K)

)}
pθ∗,π∗(y|w)g∗(w)dw,

and the first term in the brackets is zero. Hence, it suffices to show that the integral of the

second term is continuous in (θ,ϕ1:K) at (θ∗, ϕ̃1:K). In the Supplementary Material, we

prove that the response probability is continuous in ϕ1:K (Lemma SB1) and it is continuous

also in θ (Lemma SB2). Let (θm,ϕm
1:K) be a sequence of parameter values converging to

(θ∗, ϕ̃1:K). Then

lim
m→∞

log

(
p(y|w;θ∗, K, ϕ̃1:K)

p(y|w;θm, K,ϕm
1K)

)
= 0.

The result will follow from the dominated convergence theorem if there is an integrable

(with respect to pθ∗,π∗(y|w)g∗(w)) upper bound of | log p(y|w;θm, K,ϕm
1:K)|. Note that

p(y|w;θm, K,ϕm
1:K) =

∑
c∈C

π(c|K,ϕm
1K) Pr(Yi = y|θm,w, c)

≥ π(cy|K,ϕm
1K) Pr(Yi = y|θm,w, cy),
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where π(cy|K,ϕm
1K) =

∑K
h=1 ω

m
h

∏
ℓ∈cy q

m
hℓ

∏
ℓ/∈cy(1−qmhℓ). First, since ϕ

m
1K → ϕ̃1:K and π∗

cy =∑K
h=1 ω̃h

∏
ℓ∈cy q̃hℓ

∏
ℓ/∈cy(1 − q̃hℓ) > 0, the first term is bounded below by some ℓ1(y) > 0

for sufficiently large m. Second, since θm → θ∗ and Pr(Yi = y|θ∗,w, cy) > 0 (as β∗ is in a

compact set, D∗ is positive definite, and W is compact), Pr(Yi = y|θm,w, cy) is bounded

below by some ℓ2(y,w) > 0 for sufficiently large m. Finally, 1 ≥ p(y|w;θm, K,ϕm
1:K) ≥

infw∈W miny∈J T ℓ1(y)ℓ2(y,w) > 0, for all (y,w) ∈ J T ×W .

B Additional table for the application

Table B1: Estimates of the 100 brand fixed-effects from the real data on cereal market
brand mean s.d brand mean s.d

1 BEAR NAKED FIT GRN -0.19 0.29 51 KELLOGGS FROOT LOOPS -0.37* 0.08
2 BEAR NAKED GRN 0.37 0.18 52 KELLOGGS FROOT LOOPS MARSHMALLOW -1.5* 0.17
3 BETTER OATS -0.93* 0.22 53 KELLOGGS FROSTED FLAKES 0.09 0.06
4 CREAM OF WHEAT 0.14 0.1 54 KELLOGGS FROSTED MINIWHEATS 0.51* 0.06
5 CTL BR -0.44* 0.06 55 KELLOGGS FROSTED MINIWHT LTTLE BTS -0.52* 0.08
6 GENERAL MILLS APPLE CINNAMON CHEERIOS -1.22* 0.14 56 KELLOGGS KRAVE 0.54* 0.08
7 GENERAL MILLS BLUEBERRY CHEX -0.38* 0.14 57 KELLOGGS RAISIN BRAN -0.12 0.07
8 GENERAL MILLS BREAKFAST PACK -2.09* 0.52 58 KELLOGGS RAISIN BRAN CRUNCH -0.02 0.07
9 GENERAL MILLS CHEERIOS 0.1 0.06 59 KELLOGGS RICE KRISPIES -0.42* 0.07
10 GENERAL MILLS CHEERIOS OAT CRUNCH CNMN -0.48* 0.11 60 KELLOGGS RICE KRISPIES TREATS -0.1 0.32
11 GENERAL MILLS CHOCOLATE CHEERIOS -1.7* 0.22 61 KELLOGGS SPECIAL K -0.59* 0.17
12 GENERAL MILLS CHOCOLATE CHEX -0.55* 0.13 62 KELLOGGS SPECIAL K CHOCOLATY DELGHT 0.09 0.11
13 GENERAL MILLS CHOCOLATE PNUT BTR CHEERIO -1.13* 0.18 63 KELLOGGS SPECIAL K CINNAMON PECAN -0.71* 0.17
14 GENERAL MILLS CINNAMON CHEX -1.25* 0.18 64 KELLOGGS SPECIAL K FRUIT & YOGURT 0.14 0.11
15 GENERAL MILLS CINNAMON TOAST CRUNCH -0.04 0.06 65 KELLOGGS SPECIAL K PROTEIN -0.24* 0.11
16 GENERAL MILLS CINNAMON TOAST CRUNCH CHRS -1.63* 0.19 66 KELLOGGS SPECIAL K RED BERRY 0.14 0.08
17 GENERAL MILLS COCOA PUFFS -0.66* 0.09 67 KELLOGGS SPECIAL K VANILLA ALMOND -0.05 0.12
18 GENERAL MILLS COOKIECRISP -1.08* 0.16 68 KELLOGGS STBY KRISPIES US OLYMPC TM -1.63* 0.19
19 GENERAL MILLS CORN CHEX -0.47* 0.11 69 MOM BERRY COLOSSAL CRN -0.87* 0.34
20 GENERAL MILLS FIBER ONE -0.07 0.22 70 MOM CINNAMON TOASTERS -0.17 0.28
21 GENERAL MILLS FIBER ONE HONEY CLUSTERS 0.31 0.2 71 MOM COCOA DYNOBITES -0.33 0.28
22 GENERAL MILLS FROSTED CHEERIOS -1.88* 0.31 72 MOM FROSTED FLAKES -0.34 0.31
23 GENERAL MILLS GOLDEN GRAHAMS -0.17* 0.08 73 MOM FROSTED MINI SPOONERS 0.64* 0.27
24 GENERAL MILLS HONEY NUT CHEERIOS 0.16* 0.05 74 MOM FRUITY DYNOBITES -0.13 0.27
25 GENERAL MILLS HONEY NUT CHEX -1.06* 0.17 75 MOM GOLDEN PUFFS 0.27 0.18
26 GENERAL MILLS LUCKY CHARMS 0.12* 0.06 76 MOM TOOTIE FRUITIES -0.4 0.26
27 GENERAL MILLS MPL CHEERIOS CLC DSS FNDTN -0.74* 0.11 77 POST COCOA PEBBLES -0.54* 0.15
28 GENERAL MILLS MULTIGRAIN CHEERIOS -0.01 0.07 78 POST FRUITY PEBBLES -0.36* 0.09
29 GENERAL MILLS NATURE VALLEY GRN PROTEIN -0.54 0.36 79 POST GOLDEN CRISP -1.45* 0.19
30 GENERAL MILLS RAISIN NUT BRAN 0.15 0.16 80 POST GRAPENUTS -0.34 0.21
31 GENERAL MILLS REESE’S PUFFS 0.21* 0.07 81 POST GRAPENUTS FLAKES 0.16 0.29
32 GENERAL MILLS RICE CHEX -0.44* 0.09 82 POST HONEY BUNCHES OF OATS 0.27* 0.07
33 GENERAL MILLS VANILLA CHEX -0.85* 0.16 83 POST HONEY BUNCHES OF OATS GRN -2.75* 0.76
34 GENERAL MILLS VERY BERRY CHEERIOS -0.99* 0.15 84 POST HONEYCOMB -1.08* 0.14
35 GENERAL MILLS WHEAT CHEX -0.67* 0.16 85 POST OREO OS -1.8* 0.36
36 GENERAL MILLS WHEATIES 0.06 0.16 86 POST RAISIN BRAN -0.64* 0.22
37 KASHI CINNAMON HARVEST -0.69* 0.3 87 POST SELECTS GREAT GRAINS -0.23* 0.12
38 KASHI GO LEAN -0.98* 0.16 88 POST SHRD WHT ’N BRN SP SZ 0.35* 0.16
39 KASHI GO LEAN CRUNCH! -1.5* 0.28 89 POST SHREDDED WHEAT -1.12* 0.36
40 KASHI ORGANIC BLUEBERRY CLST -1.56* 0.28 90 QUAKER -0.15* 0.05
41 KELLOGGS AL JS CN PS FRFL FTLP CKSP -3.28* 0.49 91 QUAKER CAP’N CRN -0.87* 0.13
42 KELLOGGS ALLBRAN -0.64* 0.31 92 QUAKER CAP’N CRN CRN BRY -0.98* 0.12
43 KELLOGGS ALLBRAN COMPLETE WHT FLK 0.29 0.48 93 QUAKER CINNAMON LIFE -0.58* 0.09
44 KELLOGGS APPLE JACKS -0.35* 0.09 94 QUAKER GRN -1.38* 0.67
45 KELLOGGS CHOCOLT FRS FLKS TN TH TGR -1.81* 0.25 95 QUAKER LIFE -0.69* 0.1
46 KELLOGGS COCOA KRISPIES -0.75* 0.12 96 QUAKER OATMEAL SQUARES -0.2* 0.11
47 KELLOGGS CORN FLAKES -0.47* 0.1 97 QUAKER OVERNIGHT OATS -2.5* 0.25
48 KELLOGGS CORN POPS -0.61* 0.11 98 QUAKER PROTEIN -0.61* 0.15
49 KELLOGGS CRACKLIN’ OAT BRAN 0.33 0.24 99 QUAKER REAL MEDLEYS -1.2* 0.21
50 KELLOGGS CRISPIX -0.18 0.1 100 QUAKER SELECT STARTS -0.98* 0.14

The stars indicate that the corresponding 95% credible interval does not include 0. The “other” option -specific fixed-effect is normalized to 0 for identification. The
results are obtained under the MNL RC model.
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SUPPLEMENTARY MATERIAL

Section SA provides intermediate results used to prove Theorems 1 and 2 of the main

paper, and their proofs. Section SB establishes a “sparsity property” of the proposed

Metropolis-Hastings algorithm. Section SC presents the conditional posterior distributions

of the parameters other than the consideration sets. Section SD illustrates the impact of the

prior choice for the attention probabilities on the prior on the distribution of consideration

sets. Section SE shows additional simulation results under J = 4. Section SF presents

a simulation study under a large number of alternatives, J = 100. Section SG provides

additional results from the empirical application.

SA Intermediate theoretical results and proofs

SA.1 Intermediate results in the proof of Lemma 2

The following two lemmas are used to prove Lemma 2. They state that the marginal

response probability is continuous with respect to the mixture parameters as well as the

parameters in the response model. We prove the intermediate results for the case of T = 1.

The extensions to the T > 1 case can be done similarly but at the expense of proof

simplicity.

Lemma SA.1 (Continuity of response probabilities wrt mixture parameters). Let θ and

w ∈ W. Then for each j ∈ J , ∀ε > 0 and ϕ
(1)
1:K, ∃δ > 0 such that for any ϕ

(2)
1:K satisfying∑J

j=1 |q
(1)
hj − q

(2)
hj | < δ and |ω(1)

h − ω
(2)
h | < δ, for h = 1, . . . , K, we have

∣∣∣p(j|w;θ, K,ϕ
(1)
1:K)− p(j|w;θ, K,ϕ

(2)
1:K)

∣∣∣ < ε.
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Proof of Lemma SA.1. We have

∣∣∣p(j|w;θ, K,ϕ
(1)
1:K)− p(j|w;θ, K,ϕ

(2)
1:K)

∣∣∣ ≤∑
c∈C

∣∣∣π(c|K,ϕ
(1)
1:K)− π(c|K,ϕ

(2)
1:K)

∣∣∣Pr(Yit = j|θ,wt, c)

where Pr(Yit = j|θ,wt, c) ≤ 1. The term in the absolute value is

∣∣∣∣∣∣
K∑

h=1

ω
(1)
h

∏
j∈c

q
(1)
hj

∏
j /∈c

(1− q
(1)
hj )−

K∑
h=1

ω
(2)
h

∏
j∈c

q
(2)
hj

∏
j /∈c

(1− q
(2)
hj )±

K∑
h=1

ω
(1)
h

∏
j∈c

q
(2)
hj

∏
j /∈c

(1− q
(2)
hj )

∣∣∣∣∣∣
≤

K∑
h=1

ω
(1)
h

∣∣∣∣∣∣∣∣∣∣
∏
j∈c

q
(1)
hj

∏
j /∈c

(1− q
(1)
hj )−

∏
j∈c

q
(2)
hj

∏
j /∈c

(1− q
(2)
hj )︸ ︷︷ ︸

I

∣∣∣∣∣∣∣∣∣∣
+

K∑
h=1

∣∣∣ω(1)
h − ω

(2)
h

∣∣∣

The term I equals to

∏
j∈c

q
(1)
hj

∏
j /∈c

(1− q
(1)
hj )−

∏
j∈c

q
(2)
hj

∏
j /∈c

(1− q
(2)
hj )±

∏
j∈c

q
(2)
hj

∏
j /∈c

(1− q
(1)
hj )

=

(∏
j∈c

q
(1)
hj −

∏
j∈c

q
(2)
hj

)∏
j /∈c

(1− q
(1)
hj ) +

∏
j∈c

q
(2)
hj

∏
j /∈c

(1− q
(1)
hj )−

∏
j /∈c

(1− q
(2)
hj )

 ,

and hence the absolute value of I is bounded by the sum of the two terms:
∣∣∣∏j∈c q

(1)
hj −

∏
j∈c q

(2)
hj

∣∣∣
and

∣∣∣∏j /∈c(1− q
(1)
hj )−

∏
j /∈c(1− q

(2)
hj )
∣∣∣. It is easy to show that the former is bounded by

c1
∑

j∈c |q
(1)
hj − q

(2)
hj | and the latter is bounded by c2

∑
j /∈c |q

(1)
hj − q

(2)
hj | for some c1, c2 > 0. So,

|I| ≤ c3
∑J

j=1 |q
(1)
hj − q

(2)
hj | for some c3 > 0.

Lemma SA.2 (Continuity of response probabilities wrt θ). Suppose W is compact. Let

(K,ϕ1:K) and w ∈ W. Then for each j ∈ J , ∀ε > 0 and θ(1) = {β(1),D(1)}, ∃δ > 0 such

that for any θ(2) = {β(2),D(2)} satisfying ||β(1) − β(2)|| < δ and
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√
tr(D(1)−1D(2) − I)− log det(D(1)D(2)−1) < δ,

∣∣p(j|w;θ(1), K,ϕ1:K)− p(j|w;θ(2), K,ϕ1:K)
∣∣ < ε.

Proof of Lemma SA.2. Recall that for j ∈ c,

Pr(Y = j|θ,w, c) =

∫
kj(w,β, b)ϕ(b|0,D)db,

where we introduced the shorthand notation for the kernel

kj(w,β, b) =
ex

′
jβ+z′

jb∑
ℓ∈c e

x′
ℓβ+z′

ℓb
,

where we suppressed the subscripts with respect to the units i for simplicity of notation.

We have

∣∣p(j|w;θ(1), K,ϕ1:K)− p(j|w;θ(2), K,ϕ1:K)
∣∣ ≤∑

c∈C

π(c|K,ϕ1:K)
∣∣Pr(j|θ(1),w, c)− Pr(j|θ(2),w, c)

∣∣
=
∑
c:j∈c

π(c|K,ϕ1:K)
∣∣Pr(j|θ(1),w, c)− Pr(j|θ(2),w, c)

∣∣ ,
where if there is no c ∈ C such that j ∈ c and π(c|K,ϕ1:K) > 0, the claim is trivially true.

Now,

∣∣Pr(j|θ(1),w, c))− Pr(j|θ(2),w, c)
∣∣ ≤ ∣∣Pr(j|{β(1),D(1)},w, c)− Pr(j|{β(2),D(1)},w, c)

∣∣
(SA.1)

+
∣∣Pr(j|{β(2),D(1)},w, c)− Pr(j|{β(2),D(2)},w, c)

∣∣ .
(SA.2)
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To bound (SA.1), note that for any ρ > 0, one can find Mρ > 0 such that
∫
1{||b|| >

Mρ}ϕ(b|0,D(1))db < ρ. The term (SA.1) equals to

∣∣∣∣∫ (kj(w,β(1), b)− kj(w,β(2), b)
)
ϕ(b|0,D(1))db

∣∣∣∣
≤
∫
||b||≤Mρ

∣∣kj(w,β(1), b)− kj(w,β(2), b)
∣∣ϕ(b|0,D(1))db

+

∫
||b||>Mρ

∣∣kj(w,β(1), b)− kj(w,β(2), b)
∣∣ϕ(b|0,D(1))db.

Since kj(w,β, b) has a bounded first derivative with respect to β for ||b|| ≤ Mρ and

under a compact W , there is some c1 > 0 such that the first term above is bounded

by c1||β(1) − β(2)||. The second term is bounded by 2
∫
1{||b|| > Mρ}ϕ(b|0,D(1))db < 2ρ,

which can be made smaller than ||β(1)−β(2)||. Hence, (SA.1) is bounded by c2||β(1)−β(2)||

for some constant c2 > 0.

The term (SA.2) equals to

∣∣∣∣∫ kj(w,β(2), b)
(
ϕ(b|0,D(1))− ϕ(b|0,D(2))

)
db

∣∣∣∣
≤
∫ ∣∣ϕ(b|0,D(1))− ϕ(b|0,D(2))

∣∣ db
≤
√

tr(D(1)−1D(2) − I)− log det(D(1)D(2)−1),

where the last inequality is due to a known bound on the total variation distance between

normal distributions with a same mean vector but different covariance matrices (Devroye

et al., 2018).
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SA.2 Intermediate results in the proof of Theorem 2

The next lemma shows that the response probabilities are continuous for the total variation

distance defined as

dTV (pβ,π,pβ′,π′) =

∫ ∑
y∈J T

|pβ,π(y|ω)g∗(ω)− pβ′,π′(y|ω)g∗(ω)|dω.

Lemma SA.3 (Continuity of response probabilities). Let ε > 0. Then there is δ > 0 such

that d((β,π), (β′,π′)) < δ implies that dTV (pβ,π,pβ′,π′) < ε.

Proof of Lemma SA.3.

|pβ,π(y|ω)− pβ′,π′(y|ω)| ≤ |pβ,π(y|ω)− pβ′,π(y|ω)|+ |pβ′,π(y|ω)− pβ′,π′(y|ω)|

≤
∑
c

πc

∣∣∣∣∣
T∏
t=1

Pr (Yit = yt|β,wt, c)−
T∏
t=1

Pr (Yit = yt|β′,wt, c)

∣∣∣∣∣
+
∑
c

|πc − π′
c|

T∏
t=1

Pr (Yit = yt|β′,wt, c)

≤ γ1||β − β′||2 + γ2||π − π′||1,

for some positive constants γ1 and γ2.

SB Sparsity property of the proposed M-H step

The proposed M-H step exhibits a “sparsity property” which we describe below. Suppose

that an alternative j was not chosen by the subject i in any period (otherwise, it must

be in the consideration set for i and Cij = 1). Depending on the current C
(g)
ij , and the

proposed C̃ij, there are four possible moves in the M-H step. First, if C̃ij = C
(g)
ij = 1

or C̃ij = C
(g)
ij = 0, then the proposed value is accepted with probability one. Second, if
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C̃ij = 0 and C
(g)
ij = 1, then the proposed value is also accepted with probability one. In

other words, the algorithm “prefers” a smaller consideration set. This sparsity-inducing

property is proven below. Lastly, when the proposed consideration set adds an alternative

j that is not in the current consideration set, that is, C̃ij = 1 and C
(g)
ij = 0, the acceptance

probability is between 0 and 1 and is determined by the likelihood ratio.

Proposition 1 (Sparsity-inducing property). Consider the M-H step described in Algo-

rithm 1. Let j be an alternative that is not observed to be chosen by the subject i. If the

step proposes to exclude j from the consideration set of i, it is accepted with probability 1.

Proof. Let the consideration set for the ith subject at iteration g be C(g)
i . Suppose that

a category j ∈ C(g)
i is proposed to be removed so that C̃i = C(g)

i \ {j}. The acceptance

probability is

min

{
p
(
Yi = yi

∣∣β(g), b
(g)
i ,ωi, C̃i

)
p
(
Yi = yi

∣∣β(g), b
(g)
i ,ωi, C(g)

i

) , 1} = min

{∏
t

∑
ℓ∈C(g)

i
exp (Viℓt)∏

t

∑
ℓ∈C̃i exp (Viℓt)

, 1

}
= 1,

where Vijt = x′
ijtβ

(g) + z′
ijtb

(g)
i , and the last equality is due to the fact that the ratio is

larger than 1. Hence, C̃i is accepted with probability 1.

SC Conditional posterior distributions

For the mixture model on the latent consideration setsC = (C1, . . . ,Cn), let Si ∈ {1, 2, . . .}

be the latent cluster assignment such that Cij|Si = h ∼ Bernoulli(qhj), independently

j = 1, . . . , J , for i = 1, . . . , n. We have the latent consideration sets C, the common

fixed-effects β, the random effects b, the corresponding covariance matrix D, the DP

parameters V = (V1, V2, . . .) as well asQ = (q1, q2, . . .), the DP cluster assignment variables

S = (S1, . . . , Sn), and the DP concentration parameter α. Then, from the Bayes theorem,
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we define the posterior density of interest to be

p
(
C, S,V ,Q, α,β, b,D

∣∣y,ω) ∝ p
(
y
∣∣β, b,ω,C

)
· p(β, b,D) · p

(
C,S,Q,V , α

)
= p
(
y
∣∣β, b,ω,C

)
· π(β)p(b|D)π(D) · p

(
C,S,Q,V , α

)
, (SC.1)

where the first term is the likelihood function and π(·) denotes the prior density. Only the

last term in (SC.1) is associated with the DP model and

p
(
C,S,Q,V , α

)
∝ p
(
C|Q,S

)
p
(
Q,V ,S, α

)
∝

[
n∏

i=1

p
(
Ci|qSi

)
p
(
Si|V

)]
·

[
∞∏
h=1

p
(
Vh|α

)
p(qh|ϕq

)]
· π(α), (SC.2)

where p
(
Ci|qSi

)
is the product of densities for the independent Bernoulli distributions

Bernoulli(qSij) j = 1, . . . , J , p
(
Si|V

)
= ωSi

, p
(
Vh|α

)
is the density of Beta(1, α), p(qh|ϕq

)
is the product of densities for the independent Beta distributions Beta(aqj , bqj) j = 1, . . . , J ,

and π(α) is the prior density for α. We apply the slice sampling approach (Walker, 2007)

by augmenting the joint distribution with a sequence of auxiliary random variables u =

(u1, . . . , un) that follow the uniform distribution on (0, 1), ui ∼ U(0, 1), i = 1, . . . , n:

p(C,S,Q,V ,u, α) ∝

[
n∏

i=1

p
(
Ci|qSi

)
I(ui ≤ ωSi

)

]
·

[
∞∏
h=1

p
(
Vh|α

)
p(qh|ϕq

)]
· π(α). (SC.3)

It is easy to show that we can recover (SC.2) by integrating out u from (SC.3). However,

by introducing u, one only has to choose labels Si in the finite set {h : ωh ≥ ui}. See the

Supplementary Material for discussion on hyperparameter selections.

Our MCMC algorithm proceeds by cycling through various conditional distributions,

where these distributions are conditioned on the most recent values of the remaining un-
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knowns. Specifically, given the current draw at the gth iteration {u(g)
i }, {V (g)

h }, {q(g)
h }, {S(g)

i },

α(g),
{
C

(g)
i

}
, δ(g), β(g),

{
b
(g)
i

}
, and D(g), the next draw in the sequence is obtained by sim-

ulating

β(g+1) from β
∣∣{yit},{C(g)

i

}
, δ(g),

{
b
(g)
i

}
,{

b
(g+1)
i

}
from

{
bi
}∣∣{yit},{C(g)

i

}
, δ(g),β(g+1),D(g),

D(g+1) from D
∣∣{b(g+1)

i

}
,

δ(g+1) from δ
∣∣{yit},{C(g)

i

}
,β(g+1),

{
b
(g+1)
i

}
,{

C
(g+1)
i

}
from

{
Ci

}∣∣{yit}, δ(g+1),β(g+1),
{
b
(g+1)
i

}
, {q(g)

h }, {S(g)
i },

{V (g+1)
h } from {Vh}

∣∣{S(g)
i }, α(g),

{q(g+1)
h } from {qh}

∣∣{C(g+1)
i

}
, {S(g)

i },

{u(g+1)
i } from {ui}

∣∣{S(g)
i }, {V (g+1)

h },

{S(g+1)
i } from {Si}

∣∣{u(g+1)
i }, {q(g+1)

h }, {V (g+1)
h },

{
C

(g+1)
i

}
,

α(g+1) from α
∣∣{V (g+1)

h }, {S(g+1)
i }.

Repeating this procedure G times (beyond a suitable burn-in) produces a sample from the

posterior distribution.

The main paper illustrates how the consideration sets are simulated. In this section,

we show the conditional posterior distributions of the remaining parameters. Let K∗ =

min{h :
∑h

ℓ=1 ωh > 1− u∗}, where u∗ = min(u1, . . . , un). Define nh =
∑n

i=1 I(Si = h). Let

the dot • denote all other parameters and the data.
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SC.1 Simulation of qh

From (SC.2), we have that

p(qh|•) ∝ p(qh|ϕq

)
·
∏

i:Si=h

J∏
j=1

q
Cij

hj (1− qhj)
1−Cij ,

where p(qh|ϕq

)
is the product of densities for Beta distributions Beta(aqj , bqj), indepen-

dently over j = 1, . . . , J . Then

qhj|• ∼ Beta

(
aqj +

∑
i:Si=h

Cij, bqj +
∑
i:Si=h

(1− Cij)

)
,

independently over j = 1, . . . , J for h = 1, 2, . . . , K∗. If component h ≤ K∗ does not

contain any observations, then the corresponding qh is drawn from the prior.

SC.2 Simulation of Vh

From (SC.2), the conditional distribution of V is independent and the marginal conditional

distributions are

Vh|• ∼ Beta

(
1 + nh, α+

∑
ℓ>h

nℓ

)
,

for h = 1, 2, . . . , K∗. If component h ≤ K∗ is empty, then the corresponding Vh is drawn

from the prior.

SC.3 Simulation of ui

From (SC.3), it is easy to see that

ui|•
ind∼ U [0, ωSi

], i = 1, . . . , n.
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SC.4 Simulation of Si

From (SC.3), we can see that for h = 1, 2, . . . , K∗,

Pr (Si = h|C,u,V ,Q) =
I (ui ≤ ωh)

∏J
j=1 q

Cij

hj (1− qhj)
1−Cij∑

ℓ I (ui ≤ ωℓ)
∏J

j=1 q
Cij

ℓj (1− qℓj)
1−Cij

.

Note that Pr(Si = h|•) = 0 for h > K∗.

SC.5 Simulation of α

The conditional posterior of α is

p(α|•) ∝ p(S|α)π(α).

Following Escobar and West (1995), this distribution is sampled by first generating η con-

ditional on α from the Beta distribution

η|α,S ∼ Beta(α + 1, n),

and then sampling α conditional on η from the Gamma mixture

p(α|η,S) = aα +G− 1

aα +G− 1 + n(bα − log(η))
Gamma(aα +G, bα − log(η))

+
n(bα − log(η))

aα +G− 1 + n(bα − log(η))
Gamma(aα +G− 1, bα − log(η)),

where G is the total number of existing clusters.
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SC.6 Simulation of β

From Bayes theorem,

π(β|•) ∝ π(β) ·
n∏

i=1

Ti∏
t=1

Pr(Yit = yit|δ,β, bi,ωit, Ci),

where Pr(Yit = yit|δ,β, bi,ωit, Ci) =
exp(Viyitt)∑
ℓ∈Ci

exp(Viℓt)
and Vijt = δj + x′

ijtβ + z′
ijtbi.

We use a tailored Metropolis–Hastings (M-H) algorithm to sample β (Chib and Green-

berg, 1995). Define the conditional log-likelihood of β given δ, {bi}, and {Ci}: logL(β|•) =∑n
i=1

∑Ti

t=1 log Pr(Yit = yit|δ,β, bi, Ci). At iteration g, let β(g) be the value of β. A candi-

date value is drawn as

β̃ ∼ Ndx

(
β̂, V̂β

)
,

where

β̂ = argmax
β

logL(β|•)π(β), V̂ −1
β = − ∂2

∂β∂β′ logL(β|•)π(β)
∣∣∣∣
β=β̂

,

which is accepted with probability

min

{
π(β̃|•)ϕ(β(g)|β̂, V̂β)

π(β(g)|•)ϕ(β̃|β̂, V̂β)
, 1

}
,

where ϕ( ) denotes the density of normal distribution. The conditional posterior mode β̂

is computed using the Newton-Raphson method. The likelihood is known to be concave

with respect to β under the Gumbel error distribution, so the convergence to β̂ is fast and

only requires a few iterations in many cases. In the empirical application, we multiply the

variance of the proposal distribution by 10−2 in order to achieve desirable acceptance rates.
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SC.7 Simulation of bi

The full conditional of bi (for each i) is proportional to

π(bi|•) ∝ ϕ(bi|0,D) ·
Ti∏
t=1

Pr(Yit = yit|δ,β, bi,ωit, Ci).

We use a symmetric random-walk M-H to draw from the conditional distribution. Define

the conditional log-likelihood of bi given δ, β, and {Ci}: logL(bi|•) =
∑Ti

t=1 log Pr(Yit =

yit|δ,β, bi,ωit, Ci). At iteration g, let b
(g)
i be the value of bi. A candidate value is drawn as

b̃i ∼ Ndz

(
b
(g)
i ,D(g)

)
,

which is accepted with probability

min

{
π(b̃i|•)
π(b

(g)
i |•)

, 1

}
.

The updating step for bi is independent over i, so it can be easily parallelized in a

modern computer.

SC.8 Simulation of D

We simulate D by first simulating D−1 and then taking the inverse of the simulated draw.

This is because it can be shown that

D−1|• ∼ Wishart

v + n,

[
R−1 +

n∑
i=1

bib
′
i

]−1
 .
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SC.9 Simulation of δ

In princple, we could treat δ as a part of β and sample from the conditional distribution

altogether using a tailored M-H algorithm. However, the involved optimization step could

be slow when J is large, which is exactly our focus of the current paper. Hence, we sample

δ separately from β. Specifically, we use a tailored Metropolis–Hastings (M-H) algorithm

to sample δk for k = 1, . . . , J − 1, one after another.

From Bayes theorem,

π(δk|δ\k,β, b,ω,C) ∝ π(δk) ·
n∏

i=1

Ti∏
t=1

Pr(Yit = yit|δ,β, bi,ωit, Ci),

where δ\k denotes δ except for the kth element. Define the conditional log-likelihood of δk

given δ\k, β, {bi}, and {Ci}: logL(δk|•) =
∑n

i=1

∑Ti

t=1 log Pr(Yit = yit|δ,β, bi,ωit, Ci). At

iteration g, let δ
(g)
k be the value of δk. A candidate value is drawn as

δ̃k ∼ N1

(
δ̂k, σ̂

2
δk

)
,

where

δ̂k = argmax
δk

logL(δk|•)π(δk), σ̂−2
δk

= − ∂2

∂δ2k
logL(δk|•)π(δk)

∣∣∣∣
δk=δ̂k

,

which is accepted with probability

min

{
π(δ̃k|•)ϕ(δ(g)k |δ̂k, σ̂2

δk
)

π(δ
(g)
k |•)ϕ(δ̃k|δ̂k, σ̂2

δk
)
, 1

}
.

We randomize the order of updating δk, k = 1, . . . , J − 1.
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SD Prior on the distribution of attention probabilities

SD.1 Remarks on hyperparameters

In the fitting, we set the parameters of the prior as follows: for the product-specific fixed-

effects, δj ∼ N(0, 2) independently for j = 1, . . . , J , for the common fixed-effect, βk ∼

N(0, 3) independently for k = 1, . . . , dx, for the variance of the random effects, D−1 ∼

Wishart(9, (1/9)Idz), and for the DP concentration parameter, α ∼ Gamma(aα, bα) =

(1/4, 1/4) to produce Pr(H0 : ω∗ > 1 − ε) ≈ 0.5. The prior of the attention probabilities

is qhj ∼ Beta(aqj , bqj), independently over j = 1, . . . , J for h = 1, . . . ,∞. The choice of

hyperparameters, (aqj , bqj), is important, as it controls the sparsity of the consideration

sets. We set (aqj , bqj) = (s · r, s · (1 − r)), where s > 0 and r is a small prior expectation

of qhj (that is, r < 0.5), for example, r = r0
J
, where r0 is a positive integer. We call this

a sparsity-supporting prior because the prior probability is smaller for consideration sets

with larger cardinality.

SD.2 Illustration

When J is small, we can examine the impact of the hyperparameters on the implied prior

probability distribution on consideration sets by simulating from the prior. First, fix a

large positive integer K. Second, generate draws from the prior by drawing

α ∼ Gamma(aα, bα),

Vh|α
ind∼ Beta(1, α) for h = 1, . . . , K,

ωh = Vh

∏
ℓ>h

(1− Vℓ) for h = 1, . . . , K,

qhj
ind∼ Beta(aqj , bqj) for j = 1, . . . , J, h = 1, . . . , K.
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Finally, given these draws, calculate the probability of each possible consideration set using

the representation in Lemma 1; that is,

πc =
K∑

h=1

ωh

∏
j∈c

qhj
∏
j /∈c

(
1− qhj

) .

For example, when J = 4, Pr(Ci = {2, 4}) =
∑K

h=1 ωh

{
qh2qh4

(
1− qh1

)(
1− qh3

)}
.
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(a) Uniform prior

{1
}

{2
}

{3
}

{4
}

{1
, 2

}
{1

, 3
}

{1
, 4

}
{2

, 3
}

{2
, 4

}
{3

, 4
}

{1
, 2

, 3
}

{1
, 2

, 4
}

{1
, 3

, 4
}

{2
, 3

, 4
}

{1
, 2

, 3
, 4

}0

0.2

0.4

0.6

0.8

1

pr
ob

.

(b) A sparsity-supporting prior

Figure SD.1: Implied prior distribution over consideration sets (box plots) for two different
priors on qhj . Uniform prior (a) with (aqj , bqj ) = (1, 1) and sparsity supporting prior (b) with

(aqj , bqj ) = (sr, s(1 − r)) with r = 1
J , s = 1. K = 20. (aα, bα) = (1/4, 1/4). and 10,000 draws

from the prior.

Panel (a) in Figure SD.1 shows the implied prior distribution over the consideration sets

under the uniform prior on qhj when J = 4. Under the uniform prior, the prior expectation

of qhj = 0.5, so the prior is the same across all consideration sets and is centered around

0.54 = 0.0625. Panel (b) gives results under our sparsity-supporting prior. In this case, the

prior distribution shrinks to 0 as the cardinality of the consideration set increases.

The preceding shows that the prior on the attention probabilities {qhj} induces quite

different prior distributions on consideration sets. As the number of consideration sets

increase exponentially in J , it is crucial to apply regularization to the parameter space.
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Our sparsity-supporting prior promotes this regularization. It favors smaller consideration

sets, while maintaining positive probabilities on larger sets.

SE Additional material for the simulation

SE.1 Simulation results with random effects

We repeat the simulation study now with preference heterogeneity. We generate the

consideration sets as before, but now use the random effects logit with the specification

Vijt = δ∗j +(β∗+bi)xijt, where bi ∼ N(0, D∗) with D∗ = 1.12. We fit the random effects logit

with the proposed flexible approach for the distribution of consideration sets. The results

are presented in Table SE.1. We see that as n increases, the MSEs/bias/standard devia-

tion tend to decrease. However, this is not the case when the independent consideration is

imposed, i.e. K = 1. Also, MSEs/biases are larger in general than for the proposed flexible

approach. Figure SE.1 shows that for K = ∞, we see the posterior on π approaches to the

truth although it does not under K = 1 due to the mis-specification.

Table SE.1: Simulation results for J = 4 with random effects

β δ1 δ2 δ3 D π

K = ∞ n = 50 0.17 ( 0.183 ) 0.509 ( 0.674 ) 0.507 ( 0.696 ) 0.108 ( 0.437 ) 0.952 ( 0.036 ) 0.521 ( 0.04 )
n = 200 0.1 ( 0.114 ) 0.169 ( 0.368 ) 0.164 ( 0.377 ) 0.057 ( 0.245 ) 0.556 ( 0.124 ) 0.311 ( 0.02 )

K = 1
n = 50 0.186 ( 0.172 ) 1.358 ( 0.672 ) 1.369 ( 0.702 ) 0.125 ( 0.427 ) 0.951 ( 0.034 ) 0.767 ( 0.04 )
n = 200 0.166 ( 0.093 ) 2.298 ( 0.258 ) 2.321 ( 0.265 ) 0.071 ( 0.214 ) 0.708 ( 0.101 ) 0.781 ( 0.02 )

For β and δ, we show the averages of the mean squared errors, using the posterior means as point estimators. For π, we show the average
of L1 norm between the posterior mean and π∗. The average posterior standard deviations are in parentheses.

Figure SE.2 (a) shows a histogram of the estimated posterior probability of H1 (depen-

dent consideration) when H1 is true. The method appropriately assigns values close to one

for the majority of the simulations. Figure SE.2 (b) shows the result when H0 is true. The

posterior probability assigned to H1 is close to zero for the majority of the simulations.
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Figure SE.1: The true distribution over consideration sets (solid, red), posterior mean (solid
with dots, blue), 95% equal-tailed credible interval (dashed, blue). Each plot is based on one
realization of simulated data. J = 4, T = 3, with random effects.

In summary, even with random effects, our proposed method can deliver consistent

estimates of the preference parameters i.e. β and D as well as the distribution of consid-

eration sets π. In addition, our method can be used to test whether latent consideration

is independent or dependent.
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(a) Case 1 (dependent consideration)
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(b) Case 2 (independent consideration)

Figure SE.2: Histograms of estimated posterior probabilities of H1 in each of the 100 simulations
under (a) case 1 (dependent consideration - H1 is true) and (b) case 2 (independent consideration
- H0 is true). ε = 0.1, n = 50.
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SF Simulation with J = 100

SF.1 Large J

We now consider a high-dimensional scenario with J = 100. One mechanism by which the

dependence of consideration among categories can be induced is through multiple latent

subpopulations of subjects having different probabilities of consideration. Within a sub-

population, considerations are independent across categories. However, marginalizing out

the latent subpopulation indicator, one obtains dependence in those category considera-

tions. We generate the data with two subpopulations. To generate the true consideration

set of a given subject, we used a Bernoulli distribution with attention probability 0.05

for each category except for categories 10, 30, 50, 70, and 90 for the first subpopulation

(i = 1, . . . , 50) where the Bernoulli attention probability was set to 0.8. For the remaining

subjects in the second subpopulation (i = 51, . . . , 100), the Bernoulli probability was set

at 0.05 except for categories 20, 40, 60, 80, and 100 where the probability was set to 0.8.

Conditional on the true consideration sets, we generated the responses as in the case with

J = 4.

Because in this case there are 2100 − 1 support points in the distribution of the consid-

eration sets, it is not possible to show the entire distribution as in the case of J = 4 in

the paper. We focus on the estimation results regarding subject 1 whose true considera-

tion set contains 7 categories: C∗
1 = {10, 30, 50, 70, 75, 88, 90}. The upper panels of Figure

SF.1 show the averages of the posterior probabilities that C1 include each of the categories

(filled circle if the particular category is in the true consideration set and unfilled circle

otherwise). The lower panels of Figure SF.1 are the n× n similarity matrices. These give

the posterior probability that a given subject in a particular row i is in the same cluster
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(b) T = 10
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(c) T = 20

Figure SF.1: Upper panels: Posterior mean of 1{j ∈ C1} for each item j = 1, . . . , J . Filled circle
if the category j is within the true consideration set C∗

1 = {10, 30, 50, 70, 75, 88, 90}. Unfilled circle
if it is outside C∗

1 . A cross-sign indicates ∃t ≤ T : yit = j. Lower panels: similarity matrices. The
results are based on the simulated data with J = 100, T = {1, 10, 20}, and n = 100.

as another subject at a specific column i′ which is computed as the posterior probability

of the event {Si = Si′}. This probability ranges from zero (light blue) to one (dark blue).

We again see the posterior concentration toward the true consideration set as T in-

creases. Even with relatively small time periods such as T = 1 or T = 10, the categories

that have not yet been observed as responses by the subject 1 have relatively large posterior

probabilities of being in the consideration set C1. This is because subject 1 tends to be

clustered together with other subjects whose observed responses include those categories.

We see that the true clustering structure is recovered accurately at T = 10 in the similarity

matrix. This leads to the estimated consideration sets to be similar within the cluster.
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SG Additional material for the application

SG.1 Data description

We combine two sources of the data sets obtained from Nielsen, a store data and a purchase

data, in order to prepare a panel data set. The preference and consideration patterns might

have affected during the pandemic, so we chose the year 2019, which is the earliest year

available before the pandemic. In the store data, we first choose a retailer, whose identity is

not revealed in the Nielsen data, which consistently had over 100 cereal brands available at

the majority of its stores. There are 239 stores under this retailer, operating mainly in the

Midwest of the United States. See Figure 3 for the locations of the stores and percentages

of the purchases. The store data contains product information at UPC (universal product

code) level such as price and size (ounce). A “brand” can consist of multiple UPCs. Brand-

level prices are defined as size-weighted averages of UPC prices. We first pick the top 135

cereal brands in terms of the availability at these stores, which are responsible for over 90

percentages of the purchases in the purchase data at these stores in 2019. In more than

95% of the store-week combinations, the price information of the 135 brands is available,

but if it is missing, we impute the value with the average of the prices of the same brand

at the other stores in the same week. We then defined the top 100 to be the inside options

and the rest to be the “other” option. In the purchase data, we removed the households

who made less than 3 units of cereal. When households purchased multiple units of cereal

at one shopping trip, we treat them as separate purchases. This leaves us a sample with

J = 101 brands (see Appendix for a complete list of the brand names). The data contains

n = 1880 households, 25,849 purchases at 239 stores of the same retailer throughout 52

weeks.
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SG.2 Hyperparameters

We set the hyper prior parameters as follows: a sparsity-supporting prior for the attention

probabilities qhj ∼ Beta(aqj , bqj), independently over j = 1, . . . , J for h = 1, . . . ,∞, with

(aqj , bqj) = (s·r, s·(1−r)), r = r0
J
with s = 5 and r0 = 30, which implies that the prior mean

of qhj is about 0.44. For the DP concentration parameter, α ∼ Gamma(1/4, 2). The priors

for δ and β are independent normal distributions with zero mean and variance 3. The prior

for D is an inverse-Wishart distribution with hyper-parameters (v,R) = (9, (1/9)I).

SG.3 Additional estimation results and discussion

SG.3.1 Estimated parameters in the response model

Brand-specific fixed-effects. The number of brand-specific fixed-effects whose 95%

credible intervals do not include 0 is larger for MNL than MNL C and for MNL R than

MNL RC. This phenomenon was also observed by Chiang et al. (1998). To explain this,

we note that under MNL C and MNL RC, the estimated consideration sets {Ci} are much

smaller than the set with all brands. If, for example, there is a brand that is almost never

chosen by any household, the estimated {Ci} tends to exclude such a brand. The standard

logit model does not account for such nonconsideration and instead assumes that every

household considers all brands. As a result, the magnitudes (absolute value) of brand-

specific fixed effects tend to be overestimated. Under the full specification, for 70 out of

100 of them, the corresponding 95% credible interval does not include 0. Note that we

fixed δJ = 0 for identification.
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SG.3.2 Estimated parameters in the mixture model

In the following, we present additional estimation results concerning the parameters in

the mixture model under the MNL RC specification. Figure SG.1 compares the prior

and posterior densities of the DP concentration parameter α. The vague prior density

α ∼ Gamma(1/4, 1/4), suggested by Dunson and Xing (2009), is shown as the dashed line

and the posterior as the solid line.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

post
prior

Figure SG.1: pdf’s of α: prior (dashed) and posterior (solid) from the empirical application.
MNL RC.

Figure SG.2 shows the posterior probability mass function of the non-empty mixture

components. The posterior mode of the number of non-empty components is six.
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Figure SG.2: Posterior probability mass function of the number of nonempty components from
the empirical application. MNL RC.

The similarity matrix is shown in Figure SG.3. Each entry of the matrix shows the

posterior probability that a given pair of households (i, i′) are clustered together i.e. Si = Si′ ,

ranging from zero (light blue) to one (dark blue).

household

ho
us

eh
ol

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure SG.3: The similarity matrix of a sample of 100 households (out of 1880).
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SG.3.3 Additional material on the prediction

To investigate why MNL RC outperforms MNL R in prediction, we compare the predic-

tive response probabilities between the two models. For each i ∈ O, we can compute

the marginal posterior of Pr(YiTi+s = j), for each alternative j and forecasting horizon

s = 1, . . . , hi. Figure SG.4 presents the estimated response probabilities for the household

i = 3 in the first out-of-sample period, s = 1. This household repeatedly purchased brands

13, 45, 57, and 101 in the estimation sample: {45, 13, 13, 101, 13, 13, 13, 57, 57, 57, 57}, in

the order of the purchases. In the first out-of-sample week, the household purchased brand

13. The figure shows the 90% credible intervals (vertical bars) as well as the mean of

the estimated response probabilities (circles). Clearly, the estimated response probabili-

ties are much sparser for MNL RC (lower panel) than MNL R (upper). The traditional

MNL approach necessarily implies a positive probability for every alternative. In contrast,

the consideration set model allows many alternatives to actually receive zero predictive

probabilities. Thus, incorporating consideration set heterogeneity can improve predictive

performance due to the sparsity in the predictive response probabilities when the time-

invariant consideration set assumption is appropriate, which seems to be the case in this

data set.
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Figure SG.4: Estimated predictive response probabilities Pr(Yi,Ti+1 = j) for i = 3. 90% credible
intervals (bars) and means (circles). The horizontal axis represents the brands j ∈ {1, . . . , 101}.
The actual out-of-sample purchase was brand 13.

SG.3.4 Estimated consideration dependence

We conduct the test for independent consideration introduced in Section 6. The estimated

posterior probability of the alternative hypothesis is very close to one i.e. Pr(H1|Dn) ≈ 1,

and we conclude that the considerations of cereal products in this particular market are de-

pendent. Furthermore, to investigate brand pair-level dependence, consider a hypothetical

consumer i whose consideration set is drawn from the true unknown distribution. De-

fine the marginal probability that brand j is (and not) considered: π
(j)
1 = Pr(Cij = 1)

and π
(j)
0 = Pr(Cij = 0). Also define the probability that a pair of brands (j, ℓ) is con-

sidered jointly as π
(j,ℓ)
11 = Pr(Cij = 1 and Ciℓ = 1), and similarly define the probabili-

ties for the remaining three cases: π
(j,ℓ)
01 = Pr(Cij = 0 and Ciℓ = 1), π

(j,ℓ)
10 = Pr(Cij =

61



1 and Ciℓ = 0), and π
(j,ℓ)
00 = Pr(Cij = 0 and Ciℓ = 0). We employ the model-based

Cramer’s V statistics as a measure of consideration dependence between brands j and

ℓ as: ρ2j,ℓ =
∑1

s=0

∑1
m=0

(
π
(j,ℓ)
(s,m) − π

(j)
(s)π

(ℓ)
(m)

)2
/π

(j)
(s)π

(ℓ)
(m), which ranges from 0 to 1, and

ρ2j,ℓ ≈ 0 indicates that the consideration of the two brands (j, ℓ) is nearly independent.

These probabilities are approximated as functions of the model parameters, for example,

π
(j)
1 =

∑k∗

h=1 ωhqhj, π
(j)
0 =

∑k∗

h=1 ωh(1 − qhj), and π
(j,ℓ)
10 =

∑k∗

h=1 ωhqhj(1 − qhℓ), and so on.

Figure SG.5a shows the posterior means of {ρj,ℓ}. Figure SG.5b shows the brand pairs

(j, ℓ) for which the posterior probability that ρj,ℓ > 0.1 is greater than 0.95. Based on this

criteria, we identified 69 brand pairs (shown in black).
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Figure SG.5: Consideration dependence in the 2019 Midwest cereal consumption data.
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