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Abstract

Vector autoregressive processes (VAR) model contemporaneous and lagged de-

pendencies in multivariate time series. Due to changes in the model environment,

abrupt changes in model parameters may occur, which requires the identification of

unknown regimes. We propose a Bayesian method for inferring change-points in VAR

models. We show that the posterior distribution of the change-point location asymp-

totically concentrates on the true change-point when we have a single change-point

and a conjugate prior is assigned to the regime parameters. This result is extended

to non-conjugate priors, under specific conditions on prior and data, and to multiple

change-points, under controlled overlaps between estimated and true regimes. Simu-

lated studies confirm the ability to recover the changes, and an application to macroe-

conomic US data shows the utility of the proposed method compared to established

alternatives.
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1 Introduction

Vector Autoregressive Processes (VAR) are an invaluable tool for modeling temporal and

cross-sectional interdependencies in multivariate systems, with numerous applications in

economics (Bernanke et al. [6], Huber et al. [24]), finance (Billio et al. [7]), genetics (Basu

et al. [5]) and neuroscience (Seth et al. [40]). Theoretical properties of the VAR model have

been investigated in a frequentist and Bayesian framework by, respectively, Lütkepohl [30]

and Bańbura et al. [3] in the low-dimensional case, and by Basu and Michailidis [4] and

Ghosh et al. [21, 22] in the high-dimensional case.

Given the complexities of modern data, several extensions of the basic VAR model

have emerged. For example, Melnyk and Banerjee [33] introduced norm-driven sparsity

structures in autoregressive matrices, while Schweinberger et al. [39] integrated temporal

dependence with spatial structures. Lin and Michailidis [29] imposed a multi-block depen-

dency structure among the coordinates of the VAR system, and Park et al. [35] and Wang

et al. [45] explored low-dimensional factor and tensor representations of temporal dynam-

ics. In some cases, stability and homogeneity have been replaced by partial stationarity

[37, 17], heteroskedastic volatilities [14, 31], and model misspecifications [44]. The impact

of abrupt change points on the parameters of the VAR model has been studied in the

frequentist framework, with Bai et al. [1, 2] focusing on low-rank, high-dimensional cases,

Hansen [23] addressing cointegrated time series, and Lee et al. [27] employing CUSUM-

type tests [25].

To the best of our knowledge, Bayesian studies of VAR processes with change-points are

limited, with the exception of Xuan and Murphy [47] and Knoblauch and Damoulas [26],

where theoretical guarantees focus on correctly estimating regime parameters rather than

identifying change-points. We aim to address this gap by proposing a Bayesian Gaussian

VAR model with change-points. Our study investigates the theoretical properties of this

model by analyzing the behavior of the marginal posterior distribution of change-point

locations. We establish posterior ratio consistency, as defined by Cao et al. [8], Castelletti

and Peluso [10], and Castelletti and Peluso [11], for a single change-point and conjugate

regime parameter priors, under conditions where the competing model commits a finite

error in the change-point location or where the error vanishes at a rate slower than the

sample size. Additionally, a weaker form of posterior consistency is recovered when the

change-point location error diminishes at a rate proportional to the sample size, under
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minimal conditions on the data proportions within the incorrect regimes. We extend

these results to non-conjugate apriors, under specific conditions on the prior and the

true generating process, and to multiple change-points, restricting the analysis to cases

where estimated regimes are contaminated by at most one adjacent regime. Simulated

experiments validate our theoretical findings, and an application to macroeconomic data

demonstrates the utility of our methodology compared to established alternatives.

The statistical model is developed in Section 2.1 (likelihood part) and 2.2 (prior dis-

tributions). The theoretical results are discussed in Section 3, for the conjugate regime

parameter priors and one single change-point (Section 3.1), and for non-conjugate and

mis-specified priors and multiple change-points (Section 3.2). The results from simulated

and real data are discussed in Section 4, while conclusions and further research possibilities

are proposed in Section 5.

2 Model development

2.1 Vector autoregressive process with regimes

Let yt ∈ Rq be a vector of observations measured at time t, for t = 1, 2, . . . , n. The whole

time sequence {1, 2, . . . , n} is partitioned by m change-points tn1 < tn2 < · · · < tnm into

m + 1 adjacent regimes Nni = {t : tn,i−1 ≤ t < tni}, for i = 1, . . . ,m + 1, of cardinalities

n1, . . . , nm, where tn0 := 1 and tn,m+1 := n+1. Within the generic i-th regime, we assume

a Vector Autoregressive (VAR, West and Harrison [46]) dynamics of order K ≥ 1:

yt =
K∑
k=1

B
(i)
k yt−k + ϵt, t ∈ Nni (1)

where B
(i)
k are q × q lag matrices, and ϵt|Ω(i) ∼ Nq

(
0, (Ω(i))−1

)
is a q-variate time-

independent Gaussian error, with regime-specific precision matrix Ω(i). We stack all

ni observations in YNni = (ytn,i−1 , . . . ,ytni−K)⊤, a ni × q matrix, and define Yn =(
Y ⊤
Nn1

,Y ⊤
Nn2

, . . . ,Y ⊤
Nn,m+1

)⊤
as the whole n × q data matrix. In addition, we collect all

lagged observations of Equation (1) in zt = (y⊤
t−1, . . . ,y

⊤
t−K)⊤ and then all measurements

of the i-th regime in ZNni = (ztn,i−1 , . . . ,ztni−1)
⊤, a ni × Kq matrix. In this way we

rewrite (1) for all measurements in the more concise matrix form

YNni = ZNniB
(i) +ENni ,
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where B(i) = (B
(i)
1 , . . . ,B

(i)
K )⊤ of dimension Kq×q stacks by row the K lag matrices, and

ENni = (ϵtn,i−1 , . . . , ϵtni−1)
⊤ is the ni × q Gaussian error matrix. Within this framework,

we have a Matrix-Normal distribution (Dawid [16]) for the error matrix,

ENni |Ω(i),Nni ∼ Nni×q

(
0ni×q, Ini , (Ω

(i))−1
)
,

or, equivalently, vec(ENni) |Ω(i),Nni ∼ Nniq

(
0niq, (Ω

(i))−1 ⊗ Ini

)
, a niq-variate Gaussian

distribution. The conditional density associated with the i-th regime is then, for i =

1, . . . ,m+ 1 and Nn0 := ∅,

f
(
YNni |B(i),Ω(i),YNn,i−1 , . . . ,YNn1

)
=

|Ω(i)|ni/2

(2π)niq/2
exp

{
−1

2
tr

[
Ω(i)

((
B(i) − B̂Nni

)⊤
Z⊤

Nni
ZNni

(
B(i) − B̂Nni

)
+Ê⊤

Nni
ÊNni

)]}
,

where ÊNni = YNni −ZNniB̂Nni and B̂Nni =
(
Z⊤

Nni
ZNni

)−1
Z⊤

Nni
YNni . A similar expres-

sion can be found, for instance in Consonni et al. [15] in the context of a graphical model

with no change-points, and in Paci and Consonni [34] in a VAR context with no change-

points. In the current context, however, the presence of change-points requires that the

conditioning on YNn1 , . . . ,YNn,i−1 be explicit as some elements of ZNni belong to previous

regimes.

Finally, denote with θ the vector containing all the distinct regime parameters, that

is the (m+ 1)
(
Kq2 + q(q + 1)/2

)
-dimensional vector

θ =

((
θ(1)

)⊤
, . . . ,

(
θ(m+1)

)⊤)⊤
=
(
vec(B(i))⊤, vech(Ω(i))⊤; i = 1, . . . ,m+ 1

)⊤
,

with vech(·) being the half-vectorization; then we can explicit the whole likelihood as

f(Yn|θ,Nn1, . . . ,Nn,m+1) =
∏m+1

i=1 f
(
YNni |θ(i),YNn,i−1 , . . . ,YNn1

)
. In the sequel, for ease

of notation Nni will be written as Ni, therefore omitting the dependence from n.

2.2 Change-point process and priors

In the previous subsection we assume knowledge of the regimes Nni, i = 1, . . . ,m + 1,

or equivalently of the change-points tni = 1 + ⌊nτi⌋, i = 1, . . . ,m, where τi denotes the

proportion of data before the occurrence of the i-th change-point. Then the cardinality of

the i-th regime can also be expressed as ni = ⌊nτi⌋−⌊nτi−1⌋, approximated by n(τi−τi−1)

for samples large enough and τ0 := 0. The vector (τ1, . . . , τm), together with the sample
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size n, is associated to a latent state process (Sn1, . . . , Snn), indicator of the regime: Snt = i

means that the time instant t belongs to the i-th regime, that is t ∈ Nni. Following Chib

[13], the state variables can either retain the current state or move to the next higher

state, with a prior probability of, respectively p(Sn,t+1 = i+ 1|Snt = i, ωi) = ωi. Then, ωi

denotes the prior probability of a change from the i-th regime. Fixing ωi ∼ Beta(αi, βi),

the marginalization of ωi results in the following prior on the change-point locations and

on the number of change-points m < n:

pn ((τ1, . . . , τm) = (τ1, . . . , τm),M = m) = p ((Tn1, . . . , Tnm) = (tn1, . . . , tnm),M = m)

= p(Tn,m+1 > n |Tnm = tnm)
m∏
i=1

p(Tni = tni |Tn,i−1 = tn,i−1)

=
m+1∏
i=1

B(αi + 1(i ≤ m), βi + ni − 1)

B(αi, βi)
, (2)

where B(·, ·) denotes the Beta function. Given m change-points, a conjugate prior for the

regime parameter θ is

p(θ) =
m+1∏
i=1

p
(
B(i) |Ω(i)

)
p
(
Ω(i)

)
where

p
(
B(i) |Ω(i)

)
= NKq×q

(
B(i), (C(i))−1, (Ω(i))−1

)
,

p
(
Ω(i)

)
= Wq(a

(i),R(i)),

a product of Matrix Normal Wishart prior distribution, where B(i) is the prior expected

value of B(i), C(i) is the prior row precision matrix of dimension Kq × Kq, R(i) is a

q × q positive semi-definite matrix, and a(i) is a scalar strictly greater than q − 1, so that

E
(
Ω(i)

)
= a(i)

(
R(i)

)−1
. The prior density is therefore

p
(
B(i),Ω(i)

)
=

|Ω(i)|
a(i)+q(K−1)−1

2

K(C(i),R(i), a(i))
exp

{
−1

2
tr
(
Ω(i)

[
(B(i) −B(i))⊤C(i)(B(i) −B(i)) +R(i)

])}
,

with

K(C,R, a) =
(2π)

Kq2

2 2
aq
2 Γq(

a
2 )

|C|
q
2 |R|

a
2

, (3)

where Γq

(
a(i)

2

)
= π

q(q−1)
4
∏q

j=1 Γ
(
a(i)

2 + 1−j
2

)
is the q-dimensional gamma function eval-

uated at a(i)/2, and the prior normalizing constant is
∏m+1

i=1 K(C(i),R(i), a(i)).
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3 Theoretical results

3.1 Marginal likelihood and change-point detection

In this section we derive the marginal likelihood and the marginal posterior probability of

the change-point location, and we show that the model is asymptotically able to recover

the correct change-point in various settings. In particular, by establishing posterior ratio

consistency, we show that the posterior mass will be concentrated on the correct model,

for different kinds of errors committed by the alternative models.

Some algebraic manipulations show that the posterior distribution of the parameter

vector θ given the regimes and the number of change-points is

p(θ |Yn,m,N1, . . . ,Nm+1) =
m+1∏
i=1

p
(
B(i),Ω(i) |YNi ,YNi−1 , . . . ,YN1

)
, (4)

such that

p
(
B(i) |Ω(i),YNi ,YNi−1 , . . . ,YN1

)
= NKq×q

(
B

(i)
, (C(i) +Z⊤

Ni
ZNi)

−1, (Ω(i))−1
)
,

p
(
Ω(i) |YNi ,YNi−1 , . . . ,YN1

)
= Wq

(
a(i) + ni,R

(i) + Ê⊤
Ni
ÊNi +D(i)

)
,

(5)

where B
(i)

= (C(i) + Z⊤
Ni
ZNi)

−1(Z⊤
Ni
YNi + C(i)B(i)) is the posterior expectation ma-

trix of B(i), and D(i) = (B(i) − B̂Ni)
⊤{
(
C(i)

)−1
+ (Z⊤

Ni
ZNi)

−1}−1(B(i) − B̂Ni) is a

measure of discrepancy between B(i) and B̂Ni (prior and data). Define B
(i)

= (a(i) +

ni)
(
R(i) + Ê⊤

Ni
ÊNi +D(i)

)−1
. Using prior and posterior densities in Equations 3 and

4, and the likelihood expression derived in Section 2.1, we can compute the marginal

likelihood using the Chib [12] identity

m(Yn |m,N1, . . . ,Nm+1) =
f (Yn |θ,m,N1, . . . ,Nm+1) p(θ |m,N1, . . . ,Nm+1)

p(θ |Yn,m,N1, . . . ,Nm+1)
(6)

= (2π)−nq/2
m+1∏
i=1

K(C(i) +Z⊤
Ni
ZNi ,R

(i) + Ê⊤
Ni
ÊNi +D(i), a(i) + ni)

K(C(i),R(i), a(i))
,

where the function K(·, ·, ·) is defined in (3). Using the one-to-one relationship between

change-point locations and regimes, the posterior probability of the number and locations

of change-points is therefore easily implied as proportional to the product of the above

expression and the prior in (2).

In the next proposition, we show that, in case of a unique unknown change-point, the

posterior probability will favor the correct one, when the alternative model commits a

finite error γ in the estimated change-point location.
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Proposition 3.1. Given a true proportion of data τ01 in the first regime, and γ ∈

(−1, 1) such that |γ| < min{τ01, 1 − τ01}, we have, with P̄ -probability 1, as n → ∞,

that p(τ1=τ01+γ,M=1|Yn)
p(τ1=τ01,M=1|Yn)

→ 0.

Proof. For the true regimes N01 and N02, we have that n01 = ⌊nτ01⌋ and n02 = n−⌊nτ01⌋.

Then we can write

p(τ1 = τ01,M = 1|Yn) = p(Tn1 = 1 + n01,M = 1|Yn)

∝ B(α1 + 1, β1 + n0,1 − 1)B(α2, β2 + n− n0,1 − 1)(∣∣∣C(1) +Z⊤
N01

ZN01

∣∣∣ ∣∣∣C(2) +Z⊤
N02

ZN02

∣∣∣)q/2
·

Γq

(
a+n0,1

2

)
Γq

(
a+n−n0,1

2

)
∣∣∣R(1) + Ê⊤

N01
ÊN01 +D(1)

∣∣∣a+n0,1
2

∣∣∣R(2) + Ê⊤
N02

ÊN02 +D(2)
∣∣∣a+n−n0,1

2

We now notice that
∣∣∣C(i) +Z⊤

N 0
i
ZN 0

i

∣∣∣ ∼ nq
0,i

∣∣∣Ω(i)
0,Y

∣∣∣−1
, and similarly,

∣∣∣R(i) + Ê⊤
N 0

i
ÊN 0

i
+D(i)

∣∣∣ ∼
nq
0,i

∣∣∣Ω(i)
0

∣∣∣−1
, for i = 1, 2. For δn ∼ nγ,

p(τ1 = τ01 + γ,M = 1|Yn) ∼ p(Tn1 = 1 + n01 + δn,M = 1|Yn)

∝ B(α1 + 1, β1 + n0,1 + δn − 1)B(α2, β2 + n0,2 − δn − 1)(∣∣∣C(1) +Z⊤
N1

ZN1

∣∣∣ ∣∣∣C(2) +Z⊤
N2

ZN2

∣∣∣)q/2
·

Γq

(
a+n0,1+δn

2

)
Γq

(
a+n0,2−δn

2

)
∣∣∣R(1) + Ê⊤

N1
ÊN1 +D(1)

∣∣∣(a+n0,1+δn)/2
∣∣∣R(2) + Ê⊤

N2
ÊN2 +D(2)

∣∣∣(a+n0,2−δn)/2

Assuming γ ∈ (0, 1−τ01), we have that n1 > nτ01+1 for n sufficiently large. Then we have∣∣C(2) +Z⊤
N2

ZN2

∣∣ ∼ (n0,2 − δn)
q
∣∣∣Ω(2)

0,Y

∣∣∣−1
, and, for Wn :=

(
Iq +

δn
n0,1

(
Ω

(2)
0,Y

)−1
Ω

(1)
0,Y

)−1

,

∣∣∣C(1) +Z⊤
N1

ZN1

∣∣∣ ∼
∣∣∣∣n0,1

(
Ω

(1)
0,Y

)−1
+ δn

(
Ω

(2)
0,Y

)−1
∣∣∣∣ = nq

0,1

∣∣∣Ω(1)
0,Y

∣∣∣−1
/ |Wn| .

Similarly to above,
∣∣∣R(2) + Ê⊤

N2
ÊN2 +D(2)

∣∣∣ ∼ (n0,2 − δn)
q
∣∣∣Ξ(2)

0

∣∣∣−1
, whilst the equivalent

derivation in the first regime N1 is a little more involved, since B̂N1 may be not consistent,

being B̂N1 ∼ WnB0,1 + (Iq −Wn)B0,2. In this case it can be shown that∣∣∣R(1) + Ê⊤
N1
ÊN1 +D(1)

∣∣∣ ∼ nq
0,1

∣∣∣Ω(1)
0

∣∣∣−1
·
∣∣∣∣Iq + δn

n0,1
Ω

(1)
0

(
Ω

(2)
0

)−1

+Ω
(1)
0 (B0,1 −B0,2)

⊤ (Iq −Wn)
⊤
(
Ω

(1)
0,Y

)−1
(Iq −Wn) (B0,1 −B0,2)

+
δn
n0,1

Ω
(1)
0 (B0,1 −B0,2)

⊤W⊤
n

(
Ω

(2)
0,Y

)−1
Wn (B0,1 −B0,2)

∣∣∣∣
=: nq

0,1

∣∣∣Ω(1)
0

∣∣∣−1
·
∣∣∣Iq +Ω

(1)
0 Ξ

(1)
0

∣∣∣ .
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where Ξ
(1)
0 is clearly defined. Incidentally, we stress at this point that, if δn/n0,1 → 0,

then B̂N1 is consistent, Wn ∼ Iq, and the above expression reduces to nq
0,1

∣∣∣Ω(1)
0

∣∣∣−1
. Also,

using the approximation Γ(x+α) ∼ Γ(x)xα, for α ∈ R and x → ∞, we can write, for some

constant C, that Γq

(
a+ni
2

)
∼ CΓ(ni/2)

qnβ
i , where β := q

2(a− (q − 1)/2). Using the same

approximation, we note that B(α, β + x) ∼ Γ(α)x−α, for α, β ∈ R and x → ∞. Putting

the pieces together, we have that, for δn → +∞,

p (T1 = t∗n + δn,M = 1|Yn)

p (T1 = t∗n,M = 1|Yn)
∝ B(α1 + 1, β1 + n0,1 + δn − 1)

B(α1 + 1, β1 + n0,1 − 1)

B(α2, β2 + n0,2 − δn − 1)

B(α2, β2 + n0,2 − 1)

·
Γq

(
a+n0,1+δn

2

)
Γq

(
a+n0,1

2

) Γq

(
a+n0,2−δn

2

)
Γq

(
a+n0,2

2

) ∏
i=1,2


∣∣∣C(i) +Z⊤

N 0
i
ZN 0

i

∣∣∣∣∣∣C(i) +Z⊤
Ni
ZNi

∣∣∣
q/2

·

∣∣∣R(1) + Ê⊤
N01

ÊN01 +D(1)
∣∣∣(a+n0,1)/2

∣∣∣R(1) + Ê⊤
N1
ÊN1 +D(1)

∣∣∣(a+n0,1+δn)/2

∣∣∣R(2) + Ê⊤
N02

ÊN02 +D(2)
∣∣∣(a+n0,2)/2

∣∣∣R(2) + Ê⊤
N2
ÊN2 +D(2)

∣∣∣(a+n0,2−δn)/2

∼ C

(
1 +

δn
n0,1

)q
n0,1+δn

2


∣∣∣Ω(1)

0

∣∣∣∣∣∣Ω(2)
0

∣∣∣
δn/2 ∣∣∣Iq +Ω

(1)
0 Ξ

(1)
0

∣∣∣−n0,1+δn

2

Since δn ∼ γn0,1, we have that the above posterior ratio is asymptotically equivalent

to

C

∣∣∣∣∣ τ01
τ01 + γ

[
Ω

(2)
0

(
Ω

(1)
0

)−1
]γ/(τ01+γ) (

Iq +Ω
(1)
0 Ξ

(1)
0

)∣∣∣∣∣
−n(τ01+γ)/2

= C

∣∣∣∣Ω(2)
0

(
Ω

(1)
0

)−1
∣∣∣∣−nγ/2

( τ01
τ01 + γ

)q q∏
j=1

(
1 + eigj

(
Ω

(1)
0 Ξ

(1)
0

))−n(τ01+γ)/2

(7)

First treat the simplified case whereB
(1)
0 = B

(2)
0 . In this case, Ξ

(1)
0 reduces to γ

τ01

(
Ω

(2)
0

)−1

and then

p (T1 = t∗n + δn,M = 1|Yn)

p (T1 = t∗n,M = 1|Yn)
∝ C

q∏
j=1

(
τ01 + γλj

τ01 + γ
λ
−γ/(τ01+γ)
j

)−n(τ01+γ)/2

,

where λj is the j-th eigenvalue of Ω
(1)
0

(
Ω

(2)
0

)−1
. If λj = 1 for j = 1, . . . , q − 1 and

λq = ϵ ̸= 1, then the posterior ratio is proportional to ϵnγ/2
(
τ01+γϵ
τ01+γ

)−n(τ01+γ)/2
→ 0, and

the same is true for any eigenvalues, if at least one of them is different from one.

In the general case without imposition of B
(1)
0 = B

(2)
0 , using the Woodbury matrix

identity Iq −Wn =

(
Iq +

τ01
γ

(
Ω

(1)
0,Y

)−1
Ω

(2)
0,Y

)−1

we can write Ξ
(1)
0 as follows

γ

τ01

(
Ω

(2)
0

)−1
+ (B0,1 −B0,2)

⊤
(
Ω

(1)
0,Y +

τ01
γ

Ω
(2)
0,Y

)−1

(B0,1 −B0,2) .
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Therefore, from Weyl’s inequalities we have

eigj

(
Ω

(1)
0 Ξ

(1)
0

)
≥ eigj

(
γ

τ01
Ω

(1)
0

(
Ω

(2)
0

)−1
)

= λj , (8)

so that in the general case

p (T1 = t∗n + δn,M = 1|Yn)

p (T1 = t∗n,M = 1|Yn)
≤ C

q∏
j=1

(
τ01 + γλj

τ01 + γ
λ
−τ01/(τ01+γ)
j

)−n(τ01+γ)/2

→ 0.

Finally, in a similar way, it can be shown that, when γ ∈ (−τ01, 0), δn ∼ γn → −∞, and

the posterior ratio is proportional to

C

(
1− δn

n0,2

)q
n0,2−δn

2


∣∣∣Ω(2)

0

∣∣∣∣∣∣Ω(1)
0

∣∣∣
−δn/2 ∣∣∣Iq +Ω

(2)
0 Ξ

(2)
0

∣∣∣−n0,2−δn

2

= C

∣∣∣∣∣ 1− τ01
1− τ01 + |γ|

[
Ω

(1)
0

(
Ω

(2)
0

)−1
]|γ|/(1−τ01+|γ|) (

Iq +Ω
(2)
0 Ξ

(2)
0

)∣∣∣∣∣
−n(1−τ01+|γ|)/2

,

where

Ξ
(2)
0 =

|γ|
1− τ01

(
Ω

(2)
0

)−1
+ (B0,2 −B0,1)

⊤
(
Ω

(2)
0,Y +

1− τ01
|γ|

Ω
(1)
0,Y

)−1

(B0,2 −B0,1) ,

so that also in this case posterior ratio consistency holds following the same line of reason-

ing given above for positive γ, with γ, τ01,Ω
(1)
0 , Ω

(2)
0 and Ξ

(1)
0 now respectively replaced

by |γ|, 1− τ01,Ω
(2)
0 , Ω

(1)
0 and Ξ

(2)
0 .

In the next proposition, we show that it is possible to obtain posterior ratio consistency

even when the estimation error in the regime proportion vanishes at a rate lower than the

sample size.

Proposition 3.2. Given a true proportion of data τ01 in the first regime, and for any

δn ∈ R \ {0} such that |δn| → ∞ and |δn|/n → 0, we have, with P̄ -probability 1, as

n → ∞, that p(τ1=τ01+δn/n,M=1|Yn)
p(τ1=τ01,M=1|Yn)

→ 0.

Proof. First restricting to the case of δn → +∞ and B
(1)
0 = B

(2)
0 , from the proof of

Proposition 3.1, we know that the posterior ratio is proportional to

C

∣∣∣∣Ω(2)
0

(
Ω

(1)
0

)−1
∣∣∣∣−δn/2

( n01

n01 + δn

)q q∏
j=1

(
1 +

δn
n01

λj

)−(n01+δn)/2

,

where λj is the j-th eigenvalue of Ω
(1)
0

(
Ω

(2)
0

)−1
. The above expression is asymptotically

equivalent to

C

∣∣∣∣Ω(2)
0

(
Ω

(1)
0

)−1
∣∣∣∣−δn/2 q∏

j=1

exp

[
−δn

2
(λj − 1)

]
.

9



When λj = 1 for j = 1, . . . , q − 1 and λq = ϵ, note that the log posterior ratio becomes

proportional to δn
2 (log ϵ− ϵ+ 1) → −∞, proving posterior ratio consistency, and the same

is true for any eigenvalues of Ω
(1)
0 and Ω

(2)
0 , if at least one of them is different in the two

matrices. The extension of the proof to the case with B
(1)
0 ̸= B

(2)
0 and with δn → −∞

follows the same structure of the proof of Proposition 3.1.

Next, we establish a posterior consistency result, specifically marginal posterior con-

sistency, which is weaker than posterior ratio consistency. This result holds when the

estimation error in the proportion of data attributed to the regimes decreases at a rate of

n−1, as studied in Shimizu [42].

Proposition 3.3. Let τ01 be the true proportion of data in the first regime and Bc
d(τ) =

(τ − d, τ + d)c, for some d > 0. With P̄ probability 1, we have
∫
Bc

ϵ/n
(τ01)

p(τ1 = τ,M =

1|Yn)dτ → 0 for all ϵ > 0 sufficiently large.

Proof. Following the proof of Proposition 3.1, we can express the marginal probability of

the change-point as

p
(
τ1 = τ01 +

ϵ

n
,M = 1|Yn

)
∝

(
n01+δn
n01

) q
2
(n01+δn)

(2/e)qn/2∣∣∣∣(Ω(1)
0

)−1
+Ξ

(1)
0

∣∣∣∣(n01+δn)/2 ∣∣∣Ω(2)
0

∣∣∣−(n−n01−δn)/2

∝ eϵq/2(2/e)qn/2∣∣∣∣(Ω(1)
0

)−1
+Ξ

(1)
0

∣∣∣∣nτ01/2 ∣∣∣Ω(2)
0

∣∣∣−n(1−τ01)/2
,

and similarly

p
(
τ1 = τ01 −

ϵ

n
,M = 1|Yn

)
∝ eϵq/2(2/e)qn/2∣∣∣∣(Ω(2)

0

)−1
+Ξ

(2)
0

∣∣∣∣n(1−τ01)/2 ∣∣∣Ω(1)
0

∣∣∣−nτ01/2
.

The marginal posterior density outside a ball around the true model can be bounded above

by ∫
Bc

ϵ/n
(τ0)

p(τ1 = τ,M = 1|Yn)dτ =

∫ τ0−ϵ/n

0
p(τ1 = τ,M = 1|Yn)dτ

+

∫ 1

τ0+ϵ/n
p(τ1 = τ,M = 1|Yn)dτ

≤ p
(
τ1 = τ0 −

ϵ

n
,M = 1|Yn

)(
τ01 −

ϵ

n

)
+p
(
τ1 = τ0 +

ϵ

n
,M = 1|Yn

)(
1− τ01 −

ϵ

n

)
.
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The second term in the expression above converges to zero if

q(1− ln 2) + τ01 ln

∣∣∣∣(Ω(1)
0

)−1
+Ξ

(1)
0

∣∣∣∣+ (1− τ01) ln
∣∣∣Ω(2)

0

∣∣∣ > 0.

When B
(1)
0 = B

(2)
0 , it is sufficient to have

q(1− ln 2) + qτ01 ln

(
ϵ

τ01
+min

j
eigj

(
Ω

(2)
0

(
Ω

(1)
0

)−1
))

+ ln
∣∣∣Ω(2)

0

∣∣∣ > 0,

that is
ϵ

τ01
> (e/2)1/τ01

∣∣∣Ω(2)
0

∣∣∣−1/(qτ01)
−min

j
eigj

(
Ω

(2)
0

(
Ω

(1)
0

)−1
)
.

When B
(1)
0 ̸= B

(2)
0 , by Weyl’s inequalities we have∣∣∣∣(Ω(1)

0

)−1
+Ξ

(1)
0

∣∣∣∣ ≥ ∣∣∣∣(Ω(1)
0

)−1
+

ϵ

τ01

(
Ω

(2)
0

)−1
∣∣∣∣ ,

and therefore the lower bound above for ϵ
τ01

is still sufficient. A similar line of reasoning

can show that the first term in the marginal posterior density converges to zero if

ϵ

1− τ01
> (e/2)1/(1−τ01)

∣∣∣Ω(1)
0

∣∣∣−1/(q(1−τ01))
−min

j
eigj

(
Ω

(1)
0

(
Ω

(2)
0

)−1
)
.

The above proposition indicates that models assuming a change-point located at a

distance of ϵ/n from the true τ0 will be assigned a vanishing marginal posterior probabil-

ity. Our result extends Theorem 1 of Shimizu [42] in several directions: it accounts for

temporal dependence, multiple time series, and moves from a Normal-gamma conjugate

prior to a Matrix Normal-Wishart prior. Intuitively, when the error in the change-point

of the alternative model decreases rapidly, identifying the correct model becomes more

challenging. Furthermore, it is crucial that the error term ϵ in ϵ/n is sufficiently large,

meeting a lower bound specified in the proof. This bound depends on the matrices Ω
(1)
0

and Ω
(2)
0 and the proportions τ01 and 1− τ01 of the data in the two regimes.

3.2 Extension to non-conjugacy and to multiple changes

In this section, we extend previous results to accommodate any choice of prior distribution,

including non-conjugate priors. In such cases, the posterior density associated with specific

change-point locations is no longer available in closed form. Building on the work of Garel

and Hallin [20], we examine the Local Asymptotic Normality (LAN) of the model within

11



regimes, leading to a Gaussian asymptotic approximation of the posterior distribution of

the regime parameters. We also demonstrate the asymptotic equivalence of the marginal

posterior distribution of the change-point location to that of the conjugate case, under

specified conditions, regardless of the specific prior used. This holds within a model that

assumes the correct location for the change-point. For models with incorrect regimes,

we extend our marginal posterior consistency results to the case of misspecified models,

following the approach of Shalizi [41].

Proposition 3.4. Given a true proportion of data τ01 in the first regime, and γ such that

|γ| < min{τ01, 1 − τ01}, for a prior p(θ, τ1) > 0 for all (θ, τ1) ∈ Θ × [0, 1], and if the

roots of
∣∣∣I −

∑K
j=1B

(i)
0j z

j
∣∣∣ = 0 are such that |z| < 1 for i = 1, . . . ,m + 1, we have, with

P̄ -probability 1, as n → ∞, that p(τ1=τ0+γ,M=1|Yn)
p(T1=t∗n,M=1|Yn)

→ 0.

Proof. The model is Local Asymptotic Normal (LAN), since conditions A1, A2 and C1-C5

in Garel and Hallin [20] are verified for each regime. In particular, condition A1 is the

stated assumption on the determinantal equation, and condition A2 is trivially satified

since the moving average part of the model is absent; conditions C1, C2, C3 and C5

are regularity conditions on the likelihood (continuity, existence of partial derivatives,

finiteness and continuity of the expected Fisher information matrix), all satisfied because

of the assumed normality; finally, condition C4 is on the initial value of the stochastic

process, which we always satisfy since we assume it as known. Furthermore, note that

B
(i)
k ∈ Rq×q and

Ω
(i)
k ∈

⋃
n∈N

{
Ω ∈ Rq×q : Ω = Ω⊤, tr (Ω) = n, x⊤Ωx ≥ 0

}
,

for all k = 1, . . . ,K and i = 1, . . . ,m + 1. Therefore the parameter space is σ-compact,

that is it is a countable union of compact subsets. The LAN property, continuous prior

on θ strictly positive around the true θ0 and σ-compactness imply a Berstein-von Mises-

type theorem [43, Lemma 10.6] on the regime parameter posterior distribution, under

the correctly specified change-point model. In other words, for any prior respecting the

stated conditions, the posterior distribution can be asymptotically well approximated by a

Gaussian distribution that only depends on the likelihood. Then the marginal likelihood,

in light of Equation (5) of the main text, will be asymptotically equivalent to the one

computed in the conjugate case.
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On the other hand, when the change-point is misspecified, we need to verify the validity

of assumptions 1-7 in Shalizi [41], for posterior distribution consistency in misspecified

models. Assumption 1 of Shalizi [41] is merely a measurability assumption which is valid.

Assumptions 2 and 3 are on the dynamics of the likelihood ratio. In particular, it is

required that the Kullback-Leibler divergence rate

h(θ, τ1) = lim
n→∞

1

n
E

[
ln

f
(
Yn |θ0,m0,N 0

1 , . . . ,N 0
m+1

)
f (Yn|θ,m,N1, . . . ,Nm+1)

]
exists (Assumption 2) and that

lim
n→∞

1

n
ln

f
(
Yn|θ0,m0,N 0

1 , . . . ,N 0
m+1

)
f (Yn|θ,m,N1, . . . ,Nm+1)

= h(θ, τ1),

(equipartition property, Assumption 3). This holds in our case, since it can be shown that,

with γ > 0,

2h(θ, τ1) ∼
n01

n
ln

∣∣∣Ω(1)
0

∣∣∣∣∣Ω(1)
∣∣ + n02

n
ln

∣∣∣Ω(2)
0

∣∣∣∣∣Ω(2)
∣∣ + γ ln

∣∣Ω(1)
∣∣∣∣Ω(2)
∣∣ + γtr

((
Ω

(2)
0

)−1
−
(
Ω

(1)
0

)−1
)

+
n01

n
tr

(
Ω

(1)
0 (B0,1 −B0,2)

⊤ (Iq −Wn)
⊤
(
Ω

(1)
0

)−1
W−1

n (Iq −Wn) (B0,1 −B0,2)

)
,

which is almost surely finite and continuous in n, so that Assumption 4 and 7 of Shalizi

[41] are also respectively satisfied. An analogous expression can be found with γ < 0. The

remaining Assumptions 5 and 6 of Shalizi [41] are related to the prior choice, and they

are always satisfied, since priors are defined to have a support that include the true value

of θ and τ1. Therefore, we can use Theorem 3 in Shalizi [41], for which we know that

p((θ, τ1) ∈ A|Yn) → 0 on any set A with min(θ,τ1)∈A h(θ, τ1) > min(θ,τ1)∈Θ×[0,1] h(θ, τ1).

Our result then follows for A = Θ× {τ0 + γ}, γ ̸= 0 for all n.

Remark 3.1. It is of interest to see h(θ, τ1) in the proof of Proposition 3.4 as a general-

ization, to a possibly misspecifed change-point, of the usual Kullback-Leibler divergence of

a VAR model ln (|Ω0| / |Ω|) (Feutrill and Roughan 19), to which we reduce when n01 = n

(no change-point) and δn = 0 (no mispecification) at every n.

We also extend the results of Section 3.1 to a generic number m of change-points,

under the restriction that in the alternative models the estimated regimes include a limited

number of observations from wrong regimes.

Proposition 3.5. Given true proportions of data τ0k in the k-th regime, for k = 1, . . . ,m,

and γk ∈ R different from zero for some k, if Nk ∩N0,k−1 ∩N0,k+1 = ∅ for all regimes, we

have, with P̄ -probability 1, as n → ∞, that p(τ1=τ01+γ1,...,τm=τ0m+γm,M=m|Yn)
p(τ1=τ01,...,τm=τ0m,M=m|Yn)

→ 0.
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Proof. For a generic number m of change-points, fix δni ∼ nγi, i = 1, . . . ,m + 1, and

δn0 = δn,m+1 = 0. Then

p(τ1 = τ01 + γ1, . . . , τm = τ0m + γm,M = m|Yn)

= p(Tn1 = 1 + n01 + δn1 − δn0, . . . , Tn,m+1 = 1 + n0,m+1 + δn,m+1 − δnm,M = m|Yn)

∝
m+1∏
i=1

B(αi + 1, βi + n0i + δni − δn,i−1 − 1)(∣∣∣C(i) +Z⊤
Ni
ZNi

∣∣∣)q/2
Γq

(
a+n0i+δni−δn,i−1

2

)
∣∣∣R(i) + Ê⊤

Ni
ÊNi +D(i)

∣∣∣(a+n0i+δni−δn,i−1)/2
,

where γi denotes the error between the evaluated and true i-th change-point, chosen

appropriately to respect 0 < τ1 < τ2, . . . , τm < T .

With m = 2 change points, and restricting to alternative models where each regime

is contamimated by data from at most one adjacent regime, we have to distinguish three

scenarios: (a) γ1 > 0, γ2 > 0, (b) γ1 > 0, γ2 < 0 and (c) γ1 < 0, γ2 < 0. In the scenarios

with γ1 > 0, observations belonging to N02 are wrongly allocated to N1, and then we have∣∣C(1) +Z⊤
N1

ZN1

∣∣ ∼ ∣∣∣∣n0,1

(
Ω

(1)
0,Y

)−1
+ δn1

(
Ω

(2)
0,Y

)−1
∣∣∣∣; if otherwise γ1 < 0, a portion of the

observations in the correct regime N01 will be allocated in N1, and
∣∣C(1) +Z⊤

N1
ZN1

∣∣ ∼
(n0,1 + δn1)

q
∣∣∣Ω(1)

0,Y

∣∣∣−1
. Similarly, in those scenarios with γ2 < 0,

∣∣C(3) +Z⊤
N3

ZN3

∣∣ ∼∣∣∣∣n0,3

(
Ω

(3)
0,Y

)−1
− δn2

(
Ω

(2)
0,Y

)−1
∣∣∣∣, whilst if γ2 > 0 we have

∣∣C(3) +Z⊤
N3

ZN3

∣∣ ∼ (n0,3 −

δn2)
q
∣∣∣Ω(3)

0,Y

∣∣∣−1
. For the second regime, in scenario (a) N2 is made of a portion of data

in N02 and in N 0
3 , so that

∣∣C(2) +Z⊤
N2

ZN2

∣∣ ∼ ∣∣∣∣(n0,2 − δn1)
(
Ω

(2)
0,Y

)−1
+ δn2

(
Ω

(3)
0,Y

)−1
∣∣∣∣;

in scenario (b) N2 is made of a portion of data in N02, so that
∣∣C(2) +Z⊤

N2
ZN2

∣∣ ∼

(n0,2 + δn2 − δn1)
q
∣∣∣Ω(2)

0,Y

∣∣∣−1
; finally, in scenario (c) N2 is made of a portion of data in N02

and in N01, so that
∣∣C(2) +Z⊤

N2
ZN2

∣∣ ∼ ∣∣∣∣(n0,2 + δn2)
(
Ω

(2)
0,Y

)−1
− δn1

(
Ω

(1)
0,Y

)−1
∣∣∣∣.

Similar considerations can be developed for on
∣∣∣R(i) + Ê⊤

Ni
ÊNi +D(i)

∣∣∣, starting from

the different asymptotic expressions for B̂Ni =
(
Z⊤

Ni
ZNi

)−1
Z⊤

Ni
YNi in the three scenarios.

In scenario (a) described above B̂N3 is consistent, whilst

B̂N1 ∼
(
Iq +

δn1
n0,1

(
Ω

(2)
0,Y

)−1
Ω

(1)
0,Y

)−1

B
(1)
0 +

(
Iq +

n0,1

δn1

(
Ω

(1)
0,Y

)−1
Ω

(2)
0,Y

)−1

B
(2)
0

and

B̂N2 ∼
(
Iq +

δn2
n0,2 − δn1

(
Ω

(3)
0,Y

)−1
Ω

(2)
0,Y

)−1

B
(2)
0

+

(
Iq +

n0,2 − δn1
δn2

(
Ω

(2)
0,Y

)−1
Ω

(3)
0,Y

)−1

B
(3)
0 .
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Overall, in this scenario the posterior ratio is bounded above by

C

q∏
j=1

(
τ01 + γ1λ12j

τ01 + γ1
λ
−γ1/(τ01+γ1)
12j

)−n(τ01+γ1)/2

·
q∏

j=1

(
τ02 − τ01 − γ1 + γ2λ23j

τ02 − τ01 − γ1 + γ2
λ
−γ2/(τ02−τ01−γ1+γ2)
23j

)−n(τ01−τ01−γ1+γ2)/2

,

where λikj is the j-th eigenvalue of Ω
(i)
0

(
Ω

(k)
0

)−1
, and an equivalent of Proposition 3.1

can be recovered. Note that in the above expression the first term is related to the

contamination of the first regime by observations in the second regime, whilst the second

term stems from the contamination of the second regime from observations in the third

regime. In scenario (b) B̂N1 behaves as in scenario (a),

B̂N3 ∼
(
Iq −

δn2
n0,3

(
Ω

(2)
0,Y

)−1
Ω

(3)
0,Y

)−1

B
(3)
0 +

(
Iq −

n0,3

δn2

(
Ω

(3)
0,Y

)−1
Ω

(2)
0,Y

)−1

B
(2)
0

and B̂N2 is consistent, so that overall the posterior ratio is asymptotically bounded above

by

C

q∏
j=1

(
τ02 − τ01 + γ2 − γ1λ21j

τ02 − τ01 + γ2 − γ1
λ
γ1/(τ02−τ01+γ2−γ1)
21j

)−n(τ02−τ01+γ2−γ1)/2

·
q∏

j=1

(
1− τ02 − γ2λ32j

1− τ02 − γ2
λ
γ2/(1−τ02−γ2)
32j

)−n(1−τ02−γ2)/2

,

for which it is again feasible to recover a result as in Proposition 3.1. Finally in scenario

(c) B̂N1 is consistent, B̂N3 behaves as in scenario (b), also

B̂N2 ∼
(
Iq −

δn1
n0,2 − δn2

(
Ω

(1)
0,Y

)−1
Ω

(2)
0,Y

)−1

B
(2)
0 +(

Iq −
n0,2 − δn2

δn1

(
Ω

(2)
0,Y

)−1
Ω

(1)
0,Y

)−1

B
(1)
0 ,

and posterior ratio consistency as in Proposition 3.1 is still available, since the ratio is in

the limit bounded above by

C

q∏
j=1

(
τ01 + γ1λ12j

τ01 + γ1
λ
−γ1/(τ01+γ1)
12j

)−n(τ01+γ1)/2

·
q∏

j=1

(
1− τ02 − γ2λ32j

1− τ02 − γ2
λ
γ2/(1−τ02−γ2)
32j

)−n(1−τ02−γ2)/2

.

For a generalm number of change-points, we can follow the same development above. If

regimes k1, k2, . . . , kI are contaminated, respectively, by observations in regimes k′1, k
′
2, . . . , k

′
I ,
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then we can still derive posterior ratio consistency, and the posterior ratio between the

alternative model and the true one is bounded above by

C

I∏
i=1

q∏
j=1

(
|Nki ∩N0,ki |/n+ |γk|λkik′ij

τk − τk−1
λ
−|γk|/(τk−τk−1)

kik′ij

)−n(τk−τk−1)/2

→ 0.

Remark 3.2. The assumption Nk ∩ N0,k−1 ∩ N0,k+1 = ∅ in Proposition 3.5 is due to

technical reasons, and we believe it is not too limiting, since it restricts the comparison

to alternative models where the estimated change points are not too wrong, in the sense

that their corresponding estimated regimes can wrongly incorporate observations from at

most one adjacent other regime. For instance, for the case with m = 2 change-points,

this means excluding from the comparison the scenario with γ1 < 0 and γ2 > 0, where N2

is made of all data in N02 and a portion of data in N01 and in N03. In this scenario,

with δn1 = nγ1 and δn2 = nγ2 we have
∣∣C(1) +Z⊤

N1
ZN1

∣∣ ∼
∣∣∣∣(n0,1 + δn1)

(
Ω

(1)
0,Y

)−1
∣∣∣∣,∣∣C(3) +Z⊤

N3
ZN3

∣∣ ∼ ∣∣∣∣(n0,3 − δn3)
(
Ω

(3)
0,Y

)−1
∣∣∣∣,

∣∣∣C(2) +Z⊤
N2

ZN2

∣∣∣ ∼ ∣∣∣∣n0,2

(
Ω

(2)
0,Y

)−1
+ δn2

(
Ω

(3)
0,Y

)−1
− δn1

(
Ω

(1)
0,Y

)−1
∣∣∣∣ ,

B̂N1 and B̂N3 are consistent, and

B̂N2 ∼
(
Iq +

δn2
n0,2

(
Ω

(3)
0,Y

)−1
Ω

(2)
0,Y − δn1

n0,2

(
Ω

(1)
0,Y

)−1
Ω

(2)
0,Y

)−1

B
(2)
0

+

(
Iq +

n0,2

δn2

(
Ω

(2)
0,Y

)−1
Ω

(3)
0,Y − δn1

δn2

(
Ω

(1)
0,Y

)−1
Ω

(3)
0,Y

)−1

B
(3)
0

+

(
Iq −

n0,2

δn1

(
Ω

(2)
0,Y

)−1
Ω

(1)
0,Y − δn2

δn1

(
Ω

(2)
0,Y

)−1
Ω

(1)
0,Y

)−1

B
(1)
0 .

We conjecture that posterior ratio consistency can still be recovered, for a form of a pos-

terior ratio that generalizes those derived in the proofs of the previous propositions.

We emphasize that the above result is a direct extension of Proposition 3.1 from the

case of a single change-point (m = 1) to an arbitrary number of change-points. Addition-

ally, a corresponding result that extends Proposition 3.2 to multiple change-points is also

available under the same conditions.
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4 Simulations and Data Analysis

We conducted two simulated experiments. In the first experiment, we computed the Bayes

factor (BF) between the true model (in the denominator) and an alternative model that

estimates a change point with an error δn, to assess our ability to detect the correct change-

point location. Figure 1 displays the log BF for q = 2, n = 150,000, with the change point

located at t1n = 90,000. This scenario involves a change in the B matrix, from

B(1) =

0.6 0.2

0 0.1

 to B(2) =

0.6 0.1

0.1 0.5

 ,

with the precision matrix remaining unchanged at Ω(1) = Ω(2) = I2. Similar results can

be obtained with different parameter values, and the locations of the change points are

more easily identified when the B matrices in the two regimes are more distinct. On the

left side of the figure, we observe a symmetric decay of the BF as we move away from the

true change-point location, consistently identifying the correct model as the most likely.

The right side of the figure zooms in on the area around the change-point of the two time

series. In the second experiment, shown in Figure 2, we modified the previous setting to

include a change in the precision matrix, from Ω(1) = I2 to Ω(2) = 0.7I2. This adjustment

made the model selection problem easier due to the increase in the difference between the

two regimes, resulting in a BF that is lower than in the previous scenario for any level

of δn. Additionally, when the regimes have different precision matrices, we observe an

asymmetric BF decay for positive and negative errors in the change-point location. As

expected, it is easier to distinguish models that mistakenly include observations from the

high-variability regime in the low-variability regime.

In the second experiment, we compare alternative models across various true change

points. Table 1 presents the results for a single potential change point, showing the true

proportion of data in the first regime (τ01, where τ01 = 1 indicates that there are no change

points). The proportion of times that each model is selected, based on 100 randomly

generated samples of size n = 150, 000, clearly identifies the correct model. Models with

larger errors are never selected.

Then, in Table 2, we extend the experiments to two potential change points that occur

at different values of τ01 and τ02. In more detail, τ01 = 1 again denotes absence of regimes,

τ01 + τ02 = 1 denotes the identification of one change point, τ01 + τ02 < 1 of two change

points.
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Figure 1: Left: true log Bayes Factor as a function of δn, the change-point estimation error.

Right: first (top) and second (bottom) coordinate of the bivariate time series, around the

change-point (vertical line) in the matrix B.
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Figure 2: Left: true log BF (line) as a function of δ, the change-point estimation error.

Right: first (top) and second (bottom) coordinate of the bivariate time series, around the

change-point (vertical line) in both the matrices B and Ω.
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100δ1/T

τ01 -0.17 -0.13 -0.1 -0.07 -0.03 0 0.03 0.07 0.1 0.13 0.17

1.00 0 0 0 0.00 0.00 1.00 0.00 0.00 0 0 0

0.95 0 0 0 0.00 0.01 0.97 0.02 0.00 0 0 0

0.90 0 0 0 0.00 0.01 0.93 0.06 0.00 0 0 0

0.85 0 0 0 0.00 0.01 0.98 0.01 0.00 0 0 0

0.80 0 0 0 0.00 0.01 0.97 0.02 0.00 0 0 0

0.75 0 0 0 0.00 0.00 0.99 0.01 0.00 0 0 0

0.70 0 0 0 0.00 0.03 0.93 0.04 0.00 0 0 0

0.65 0 0 0 0.00 0.01 0.94 0.05 0.00 0 0 0

0.60 0 0 0 0.00 0.01 0.94 0.05 0.00 0 0 0

0.55 0 0 0 0.00 0.02 0.92 0.05 0.01 0 0 0

0.50 0 0 0 0.00 0.06 0.90 0.03 0.01 0 0 0

0.45 0 0 0 0.00 0.03 0.93 0.04 0.00 0 0 0

0.40 0 0 0 0.00 0.01 0.98 0.01 0.00 0 0 0

0.35 0 0 0 0.00 0.03 0.95 0.02 0.00 0 0 0

0.30 0 0 0 0.01 0.04 0.93 0.02 0.00 0 0 0

0.25 0 0 0 0.01 0.03 0.93 0.03 0.00 0 0 0

0.20 0 0 0 0.00 0.03 0.94 0.03 0.00 0 0 0

0.15 0 0 0 0.00 0.04 0.91 0.04 0.01 0 0 0

0.10 0 0 0 0.00 0.05 0.93 0.02 0.00 0 0 0

0.05 0 0 0 0.00 0.02 0.94 0.04 0.00 0 0 0

Table 1: Simulated results with zero or one change points. The true data proportion in the

first regime is denoted by the row, and the evaluated model commits a mistake denoted by

the column. Cells contain proportion of times, over 100 simulated datasets of size 150000,

the column model is selected, with best models in boldface.
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Finally, we apply our approach to three key monthly US macroeconomic variables

(q = 3), which have been extensively used in studies such as McCracken and Ng [32], Car-

riero et al. [9], and Dufays et al. [18]. These data are publicly available through the Federal

Reserve Bank of St. Louis and can also be accessed at http://qed.econ.queensu.ca/

jae/datasets/dufays001/ [18]. The variables include the civilian unemployment rate

(UNRATE), the federal funds rate (FEDFUNDS), and the spread between 10-year Trea-

sury bills and federal funds rates (T10YFFM), covering the period from February 1959 to

May 2017 (n = 700).

We set a = q + 1 and assume R(1) = R(2) = Iq/100, centering the precision matrices

in both regimes on high variances with significant prior uncertainty. Furthermore, we fix

B(1) = B(2) = 0 and C(1) = C(2) = Iq/100, reflecting the a priori belief in the absence

of lagged dependencies among the series, albeit with high uncertainty. Evaluating the

marginal likelihoods as shown in Table 2, but using a finer grid for change points with a

step size of 0.1, we identified two change points (indicated by vertical bars in Figure 3):

one in July 1976 and another in March 1988. These changes define an intermediate regime

characterized by unusual spikes in FEDFUNDS and T10YFFM. Although we explored the

possibility of additional change points, they resulted in lower marginal likelihoods.

For comparison, we also implemented two additional methods for detecting change

points in VAR models that are available in the literature: the threshold block segmentation

scheme (TBSS) by Bai et al. [1] and Safikhani and Shojaie [38], and the FASTCPD method

by Zhang and Dawn [48] and Li and Zhang [28]. The results of these methods are shown in

the lower part of Figure 3. TBSS and FASTCPD identified seven and four change points,

respectively, but the three methods did not converge on the same set of changes. The two

changes identified by our approach are similar, though not identical, to two of the change

points detected by TBSS and FASTCPD. When we evaluated the marginal likelihood at

the change points identified by the alternative methods, the log Bayes factors were -117.27

and -179.2, favoring our selected model.

5 Conclusions and further directions

We have proposed a Bayesian methodology for detecting change-points in Vector Autore-

gressive Processes, with a focus on achieving posterior consistency in identifying change-

point locations, even when alternative models assume incorrect locations with finite or
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Figure 3: Top left: the three macroeconomic monthly series UNRATE, FEDFUNDS and

T10YFFM, from February 1959 to May 2020, with change-points as vertical bars, esti-

mated by our method. Top right: log Bayes Factor between alternative change point

configurations and the best selected model. Bottom left: macroeconomic series change-

points, estimated by TBSS. Bottom right: macroeconomic series change-points, estimated

by FASTCPD.
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vanishing errors. Our approach extends conjugate analysis to non-conjugate and mis-

specified priors, as well as to scenarios involving multiple change-points, under specific

conditions related to contamination among regimes. The theoretical results are validated

through simulations, and we demonstrate the practical utility of our model on a mul-

tivariate macroeconomic series, comparing its performance with established alternative

methods.

Settings with an increasing number of time series q are also of scientific interest. No-

table works in this direction include Basu and Michailidis [4] and Ghosh et al. [21, 22],

although, to our knowledge, no change-point analysis has been explored in the literature.

A generalization of our approach to the cases where q increases with n is currently un-

der investigation. We conjecture that similar proof structures can be applied, provided

that appropriate sparsity constraints are introduced in both contemporaneous and lagged

dependencies. These constraints would involve imposing conditional independences in

the precision matrices Ω(i) and the lag matrices B(i). In this high-dimensional context,

some of the key results we have relied on, such as the asymptotic equivalence between∣∣C(1) +Z⊤
N01

ZN01

∣∣ and nq
01

∣∣∣Ω(1)
0,Y

∣∣∣−1
, are no longer applicable. However, they can be

replaced by similar expressions that involve sparsity-driven submatrices of Ω
(1)
0,Y . For a

similar approach to bridge low- and high-dimensional settings within the graphical mod-

eling framework, see Castelletti and Peluso [11].

Finally, it is possible to extend the proposed methodology to multivariate change

points, where multiple change point processes are linked to different subsets of the regime

parameters, as in Peluso et al. [36]. This allows for distinguishing the timing of regime

changes in the lag matrix from those in the covariance matrix. While such an extension is

likely to introduce additional notational complexity, it is expected to improve finite-sample

performance in identifying change-points, due to the increased number of observations

available within each parameter-specific regime.
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