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1 Introduction and Preliminary Remarks

This manuscript is largely based on the fundamental paper in Econometrica by Duffie, Pan, Sin-

gleton (2000) to which we will refer as DPS(2000) in what follows. Our purpose is to show how

in partial equilibrium setting one can start with a particular objective Affine Jump-Diffusion

(AJD) dynamics of state variables, make assumptions about the dynamics of SDF followed

by risk premium derivation, work out change of measure to compute the risk-neutral parame-

ters, and finally adapt the general procedure described in DPS(2000) to option pricing for the

particular economy under consideration.

We emphasize applied derivations and intuition behind the results, because the purpose of

this manuscript is to provide mainly financial asset pricing details of practical implementation of

the AJD model considered in the companion paper. For more rigorous mathematical treatment

od some technical issues discussed here, the reader is referred to Protter (2003), Oksendal (2003)

and DPS(2000).

Due to applied focus of our work, we often need to switch back and forth between continuous-

time and its (Euler-)discretized analogue to fit our model to discretely observed data. Therefore,

as necessary, we will attempt to make careful and explicit distinction between these two settings

and contrast them from econometric and asset pricing prospectives.

2 Review of Empirical Literature

Estimation of continuous-time models has become an increasingly popular area of research over

the last decade. Continuous-time is used to model state variables such as interest rates, leading

to models of term-structure and credit risk [Dai and Singleton (2003)], as well as stock prices

and volatility enabling us to study dynamics of equity and derivatives markets. While there

are several survey papers covering these topics [Bates (2003), Garcia, Ghysels, Renault (2003),

Johannes and Polson (2003)] in this section we shall focus our attention on the papers that

attempt to learn about dynamics of a given underlying equity given the time series of its historical

prices and a panel of options written on it.

While inference conditional on information set enriched with option prices has a strong

intuitive appeal compared to estimating AJD models using only prices of the underlying equity

[Eraker, Johannes, and Polson (2004), Chernov, Gallant, Ghysels, Tauchen (2003)], researchers

have quickly discovered that conducting joint inference using full information methods in this

setting is quite challenging and computationally expensive. Some of the pioneering work in this

area has been done by Bates (1996), (2000) and Bakshi, Cao, Chen (1997), where in the context

of Stochastic Volatility with Jumps (SVJ) various features were added and evaluated, such as

time-varying jump intensity, state-dependent risk free rate, multi-factor volatility specification,

etc. Their econometric methodology was a two-step approach: from the cross-section of option

prices infer structural objective and risk premium parameters as well as latent factor realizations
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and then analyze them in the time-series domain given the observed evolution of the underlying

security.

A number of variations of the above two-step estimation approach have followed: Chernov

and Ghysels (2000) in the context of Heston (1993) Stochastic Volatility model use Gallant

and Tauchen (1996) EMM to fit seminonparametric joint density of the underlying and implied

volatilities, while filtering spot volatilities via reprojection. Andersen, Benzoni, Lund (2002)

included the volatility factor in the mean return drift coefficient and have established ”... a

general correspondence between the dominant characteristics of the equity return process and

option prices...” using EMM methods on SVJ model. Chernov (2003) solves for coefficients

(market prices of risk) of the SDF dynamics in artificially complete multi-factor stochastic

volatility model-economy. Broadie, Chernov, Johannes (2004) explicitly state that in order to

”...compromise between the competing constraints of computational feasibility and statistical

efficiency” they engage in a two-stage approach where they use objective ”...parameter estimates

obtained from prior studies using a long time-series of returns. Then, given these parameters,

we use the information embedded in options to estimate volatility and risk premiums.” In their

effort to fit Stochastic Volatility with correlated jumps both in stock price and volatility, and

investigate importance of jumps in volatility, they find it crucial to include a broad cross-

section of options to learn as much as possible about the latent volatility process. However

they immediately note that despite the theoretical advantages of joint estimation ”...the extreme

computational burdens generated when using both sources of data severely constraints how much

and what type of data can be used.” Bates himself is still attempting to enhance his original

estimation by developing a direct filtration-based maximum likelihood methodology in transform

space of characteristic functions in Bates (2004).

The data sets used in most of the papers in this area include some large index such as S&P

500, due to availability of rich panel of options written on it. These options are traded frequently

for most maturities and exercise prices. However, Bakshi, Cao (2004) and Dubinsky, Johannes

(2005) decided to apply similar techniques to data sets of individual stocks. As they are dealing

with more than one underlying security, computational demands become even more severe and

they chose to focus on the option error to maximize its likelihood or minimize squared error

virtually ignoring the dynamic structure of the underlying securities in their estimation.

There were, however, successful attempts to conduct a genuine joint inference. Pan (2002)

estimates SVJ model, enriched with CIR process for risk-free rate and dividends, by augmenting

classical GMM method with ”implied-state” volatility derived by inverting the option-pricing

relation for a given set of parameters. One of the notable contributions of this paper is faster

numerical integration procedure for option pricing computation based on truncation error as

a function of desired precision. Among the empirical findings of this paper I would like to

emphasize suggestive evidence in the support of jumps in volatility, despite the fact that she

only considered SVJ model. While GMM methodology is not likelihood-based, there are several
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papers that employ full-information genuine likelihood-based Bayesian MCMC methods. In the

simplest SV model setting Polson and Stroud (2003) illustrate how such joint inference could

be conducted using a panel of three options. In a very diligently written paper Jones (2003)

estimates SV with constant elasticity of variance model as well as its generalization. He uses

Market Volatility Index (VIX) as a proxy for the expected future average variance, which in

turn provides information about the latent volatilities via asset-pricing relationship.

One common theme runs through all these papers: trade-off between the quality of the data,

richness of the model, and reliability of econometric inference. In our companion paper we will

present the state-of-the-art MCMC estimation techniques that coupled with powerful computing

resources would allow us to avoid compromising on all these issues.

3 Model Specification under the Objective Distribution

3.1 Continuous time security dynamics

We begin by specifying the dynamics at time t of the underlying stock prices St and volatility1

Vt under the objective measure P :

dSt

St−
= µtdt+

√
Vt−dW

s
t (P ) + Γs

tdJ
s
t − Et(Γs

tdJ
s
t ) (1)

dVt = κv(θ − Vt−)dt+
√
Vt−σvdW

v
t (P ) + Zv

t dJ
v
t

where Brownian motions W s
t (P ),W v

t (P ) are correlated: Cov(dW s
t (P ), dW v

t (P )) = ρdt, random

variables Γs
t and Zv

t are respectively price and volatility jump sizes at time t. Depending on the

specific distributional assumptions for these variables that we will make in section (3.5), several

types of models could be specified, including stochastic volatility (SV), stochastic volatility with

jumps (SVJ), and stochastic volatility with jumps in volatility (SVJV). Jump occurrence variable

J
(i)
t (i = s, v) is a Poisson counter with instantaneous intensity λ: Prob(dJt = 1) = λdt. In

empirical work Js
t is usually set equal to Jv

t , thereby assuming that the same Jump shock hits

both stock price and volatility. This allows us to introduce a meaningful2 relationship between

the jump sizes Γs
t and Zv

t by modelling their joint distribution leading to stochastic volatility

with correlated jumps (SVCJ) model. Finally, we can allow the jump intensity parameter λ to

be a time-varying function of the state-variable, resulting in the most general model (SVSCJ)

considered in this paper.

Note that the inclusion of compensator term Et(Γs
tdJ

s
t ) was necessary in order to be able to

interpret the drift µt as E[dSt
St

], which is later shown to equal the risk free rate plus risk premium

in the dynamics of St under objective measure. However, because volatility is not a traded

asset, the notion of ”risk-free + risk premium” is meaningless for volatility, the compensator in
1In order for CIR (square-root) with Jumps dynamics of volatility to remain always positive the following

technical condition is sufficient: 2κθ − σ2
v > 0, given that volatility jump size Zv

t is nonnegative.
2If Js

t 6= Jv
t , the relationship between Γs

t and Zv
t becomes much harder to interpret.
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Vt dynamics is not introduced. The speed of volatility mean-reversion to an unknown long-run

mean θ is controlled by unknown parameter κv. Volatility of volatility σv is also an unknown

parameter to be estimated. We assume that our state variables X = (S, V ) are right-continuous

(cadlag3) and denote the left limit Xt− = lims↑tXs. However, for notational clarity in what

follows, distinctions between the pre-jump Xt− and post-jump Xt values will be made only

when necessary to avoid confusion and are assumed to be implicitly implied otherwise.

Equivalently, assuming dW (1)
t (P ) and dW (2)

t (P ) are orthogonal Brownian motions we have:

dSt

St
= µtdt+

√
VtdW

(1)
t (P ) + Γs

tdJ
s
t − Et(Γs

tdJ
s
t ) (2)

dVt = κv(θ − Vt)dt+
√
Vtσv(ρdW

(1)
t (P ) +

√
1− ρ2dW

(2)
t (P )) + Zv

t dJ
v
t

3.2 Discrete time security dynamics

For estimation purposes we need to apply stochastic discrete-time approximation to our stochas-

tic continuous-time model because real-life databases report prices in discrete time intervals. As

most papers in the field, we will use the Euler Approximation4, also sometimes called Euler-

Maruyama approximation, that transforms our continuous-time model (1) into its discrete-time

analogue:

St∆ − S(t−1)∆

S(t−1)∆
=

(
µ(t−1)∆ − λt∆Et∆ [Γs

t∆]
)
∆ +

√
V(t−1)∆∆εst∆ + Γs

t∆J
s
t∆ (3)

Vt∆ − V(t−1)∆ = κv(θ − V(t−1)∆)∆ +
√
V(t−1)∆∆εvt∆ + Zv

t∆J
v
t∆

where ∆ is usually set less than or equal to the uniform time interval between market prices

reported in the utilized database5. In discrete time, correlated Brownian motions are replaced

with a bivariate normal variable:

(εst∆, ε
v
t∆)′ ∼ N (0,Σ), Σ =

(
1 ρσv

ρσv σ2
v

)
.

Although jumps could occur more than once over any discrete-time interval of length ∆, empiri-

cally we wouldn’t be able to distinguish ”more jumps” from ”bigger jumps” (jump size magnitude

vs. jump arrival frequency) given no observed data points inside the time interval. Therefore,

in order to preserve econometric identifiability, jump arrivals Js
t∆, J

v
t∆ are modelled as Bernoulli

binary random variables, in contrast to Poisson-distributed jumps in the continuous-time formu-

lation (1). Another unfortunate side-effect of Euler discretization is that positivity of volatility

can no longer be guaranteed, even if volatility jump size is modelled to be nonnegative: at any
3See Protter(2003), or Cont and Tankov (2004).
4Kloeden and Platen (1992) chapter 9 provides a detailed discussion of strong/weak convergence, consistency,

numerical stability and other properties of Euler approximation. Higher order strong Taylor approximations are
discussed in chapter 10.

5Our data in the main paper came from OptionMetrics and merged CRSP/Compustat databases, where daily
closing prices are reported, therefore we used ∆ = 1 day. Using smaller ∆ would improve approximation accuracy,
but it would require data augmentation approach similar to Elerian, Chib, Shephard (2001).
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time t∆ there is a non-zero probability that εvt∆ will be large enough to turn volatility negative.

This probability could be greatly reduced by decreasing ∆ and working with relatively small

volatility of volatility parameter σv, but it can never be eliminated completely.

3.3 Stochastic Discount Factor dynamics and risk premiums

The cornerstone of Finance is the Fundamental Theorem of Asset Pricing6(FTAP), which states

that No-Arbitrage restriction is equivalent to the existence of some positive stochastic discount

factor (SDF) that prices all payoffs (even if the markets are incomplete, while complete markets

imply uniqueness of SDF), which lies in the space spanned by the priced risk factors in the

economy. In our case we assume that there are only 3 priced risk factors: dW (1)
t , dW

(2)
t ,Γs

tdJ
s
t .

In addition, we assume the existence of a risk free security following dB
B = rtdt. This implies

a negative risk-free mean in the SDF dynamics, because SDF must price the risk-free security

correctly as well as the stock (see the next section for more detailed explanation). Therefore,

the generic dynamics of the SDF Mt could be written as:

dMt

Mt
= −rtdt− ζ

(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P ) + ΓM

t dJ
s
t − Et(ΓM

t dJ
s
t ) (4)

or equivalently as

dMt

Mt
= −rtdt− ζs

t dW
s
t (P )− ζv

t dW
v
t (P ) + ΓM

t dJ
s
t − Et(ΓM

t dJ
s
t ) (5)

The above specification hinges on a simplifying assumption that volatility jump risk is not

priced. By adding ZM
t dJv

t − Et(ZM
t dJv

t ) to SDF dynamics above we can easily relax this

assumption. Because to our knowledge, there is no deep GE-based economic argument behind

pricing volatility jump risk, this assumption is best approached from the empirical prospective.

We will argue on econometric ground that it would be hard to estimate the risk premium

associated with this risk component due to the fact that we are already pricing the volatility

diffusion risk, while the volatility itself is not observed.

From the asset-pricing prospective, because at every point in time we have more priced

sources of risk (three) than traded securities excluding the risk free bond (one), SDF is not

uniquely identified in terms of the unknown market prices of risk: ζ(1)
t , ζ

(2)
t and stochastic jump

size ΓM
t . Therefore, we are working with incomplete market economy setting, yet we can still

appeal to the FTAP, which enables us to derive asset pricing formulas up to the unknown risk

premium parameters using the intuitive No-Arbitrage assumption. Option pricing approach of

DPS(2000) is entirely based on the FTAP. Having derived all the pricing results for our incom-

plete market economy, in the empirical setting inference about the unknown SDF parameters

could still be made using the observed prices on a cross-section of additional traded securities

such as options. Certainly, from asset-pricing prospective, simply adding two options to the
6See Cochrane(2000) for detailed and intuitive treatment of SDF-based asset pricing using geometric repre-

sentation and linear algebra
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above economy would effectively complete the market and adding even only one more for a total

of three options in the cross-section would overidentify the SDF parameters leading to arbitrage

opportunities in such economy. However, in our empirical model, option prices ”come” with

some non-priced security-specific noise, which precludes SDF parameter overidentification7. In-

tuitively, this approach could be compared to a simple multivariate linear regression, when there

is only k unknown parameter to estimate, but T > k data points that could potentially overiden-

tify the system, if we try to force the exact model fit. The presence of noise comes to rescue and

the issue of identifying the unknown parameters becomes one of econometric inference. That is

exactly what we want to motivate here: making a transition from option pricing in incomplete

market consisting only of the underlying and riskless bond using FTAP, to econometric problem

of estimating the unknown parameters of SDF having added a cross-section of options.

3.4 Risk Free rate

Option pricing methodology of DPS(2000) is applicable for quite robust (although linear in state

variables) specifications of the risk free rate dynamics, the most general of which would express

the interest rate as a linear function of the state variables while introducing a new source of

interest rate-specific uncertainty, which could add another dimension to the SDF. However, a

number of empirical papers (e.g. Bakshi, Chao and Chen (1997), Pan (2002)) have found that

stochastic interest rates don’t influence the model fit to the data. Intuitively, this assumption is

usually justified by the fact that the life-span of derivative securities is relatively too short for

time-varying interest rates to significantly influence model dynamics. Therefore, as most current

empirical papers on derivative pricing, we will assume that the risk free rate r is constant, while

for the sake of generality we will sometimes use the time subscript rt in some formulas.

3.5 Econometric model

All the above discussion allows us to formulate an econometric model to make joint inference on

objective and risk neutral parameters given a panel of options and a time-series of the underlying

security. Let D be the observed derivative price, Y the logarithm of the asset price and V be

the latent volatility. For time t = 0, . . . , T − 1 and traded derivatives j = 1, . . . , nt, the time-

discretization of the derivative price and the asset’s and volatilities stochastic difference equation

are:

Dt∆,j = F (Yt∆, Vt∆;χj ,Θ,Λ) + εt∆,j (6)

Yt∆ − Y(t−1)∆ =
(
µt −

1
2
V(t−1)∆ − λEt [exp{Zs

t∆} − 1]
)

∆ +
√
V(t−1)∆∆ εst∆ + Zs

t∆J
s
t∆

Vt∆ − V(t−1)∆ = κ(θ − V(t−1)∆)∆ +
√
V(t−1)∆∆ εvt∆ + Zv

t∆J
v
t∆

7See Bates(2000) p. 195 for a discussion of overidentifying restriction that all options be priced exactly by a
parsimoniously parameterized model, and the discussion of option pricing errors.
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where,

εt∆,j ∼ N (ρjε(t−1)∆,j , s
2
j ), εt∆,j⊥εt∆,j′ , j 6= j′,

(εst∆, ε
v
t∆)′ ∼ N (0,Σ),

Σ =
(

1 ρσV

ρσV σ2
V

)
,

χj , ρj and s2j denote respectively option j-specific parameters of contract terms, autocorrelation

coefficient, and pricing error variance. The risk premium parameters contained in Λ provide the

link from objective (Θ) to risk neutral parameters, which serves as the main focus of this paper,

used to find the theoretical (no-arbitrage implied) option price F .

It is convenient to set: λ̄ = λs + λv + λc, because it incorporates the following models:

• SV:

Js
t∆ = Jv

t∆ = 0

• SVJ:

Js
t∆ ∼ Bernoulli(λs)

Jv
t∆ = 0

Zs
t∆ ∼ N (µs, σ

2
s)

µ = exp{µs + 0.5σ2
s} − 1

µQ = exp{µQ
s + 0.5σ2

s} − 1

• SVSJ:

Js
t∆ ∼ Bernoulli(λs)

Jv
t∆ = 0

Zs
t∆ ∼ N (µs, σ

2
s)

µ = exp{µs + 0.5σ2
s} − 1

µQ = exp{µQ
s + 0.5σ2

s} − 1

The jump intensity is time-varying, λt∆ = λ0 + λ1V(t−1)∆.

• SVJV:

Js
t∆ = 0

Jv
t∆ ∼ Bernoulli(λv)

Zv
t∆ ∼ exp(µv)

µ = 0

µQ = 0
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• SVCJ:

Js
t∆ = Jv

t∆ ∼ Bernoulli(λc)

Zv
t∆ ∼ exp(µv)

Zs
t∆|Zv

t∆ ∼ N (µs + ρJZ
v
t∆, σ

2
s)

µ = exp{µs + 0.5σ2
s}/(1− µvρJ)− 1

µQ = exp{µQ
s + 0.5σ2

s}/(1− µvρJ)− 1

• SVSCJ:

Js
t∆ = Jv

t∆ ∼ Bernoulli(λc
t∆)

Zv
t∆ ∼ exp(µv)

Zs
t∆|Zv

t∆ ∼ N (µs + ρJZ
v
t∆, σ

2
s)

µ = exp{µs + 0.5σ2
s}/(1− µvρJ)− 1

µQ = exp{µQ
s + 0.5σ2

s}/(1− µvρJ)− 1

The jump intensity is time-varying, λc
t∆ = λ0 + λ1V(t−1)∆.

Formulas for µQ ≡ EQ
t [exp{Zs

t∆} − 1] and µ ≡ Et [exp{Zs
t∆} − 1] will be derived later in section

(6.6).
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4 Some Useful Results in Continuous Time

In derivations that follow we will make extensive use of the following important result from Ito

Calculus:

Theorem 1 Multi-Dimensional Jump-Diffusion Ito’s Formula:8

Let Yt = F (Xt, t), where Xt is an N-dimensional AJD process:

dXt = µ(Xt−)dt+ σ(Xt−)dWt + g(Xt−)ΓtdJt. Then,

dYt =
∂F

∂t
(Xt−, t−)dt+

N∑
i

∂F

∂X i
(Xt−, t−)dX i

t +
1
2

N∑
i,j

∂2F

∂Xi∂Xj
(Xt−, t−)dXi

tdX
j
t (7)

+ (F (Xt− + g(Xt−)Γt, t−)− F (Xt−, t−))dJt

This result is of such great practical use that we find helpful to also mention its special case:

One-Dimensional Jump-Diffusion Ito’s Formula:

If dSt = µ(St−)dt+ σ(St−)dWt + g(St−)ΓtdJt, then for Yt = F (St, t):

dYt = (∂F
∂t + µ(St−)∂F

∂S + σ2(St−)
2

∂2F
∂2S

)dt+ σ(St−)∂F
∂S dWt + (F (St− + g(St−)Γt, t)− F (St−, t))dJt

Now, applying Ito’s lemma for Jump-Diffusion case to transformations Yt = ln(St) and ln(Mt)

with dynamics of St and Mt given in (19) and (4) respectively we get9:

dYt = (µt −
1
2
Vt)dt+

√
VtdW

(1)
t (P ) + ln(1 + Γs

t )dJ
s
t − Et(Γs

tdJ
s
t )

dln(Mt) = −(rt +
1
2
(ζ(1)2

t + ζ
(2)2
t ))dt− ζ

(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P ))

+ ln(1 + ΓM
t )dJs

t − Et(ΓM
t dJ

s
t )

We can provide an equivalent specification of stock price and SDF dynamics by integrating both

sides of the above equations from 0 to T , which leads to the solution of the stochastic process
8This particular formulation was adapted here by combining Ito’s formula given in Oksendal ”Stochastic

Differential Equations” 5th edition p.48 and Protter (2003) p. 82. See these original sources for detailed treatment,
proof and specification.

9Note that if we model SDF dynamics using non-orthogonal specification of a high-dimensional Brownian
motion dW s

t , dW
v
t , correlation terms will have to be added to the resulting log SDF dynamics (as seen in the

high-dimensional Ito’s formula), which is written for orthogonal case in its present form for the purpose of
transparency. These additional correlation-induced terms will play a role in the formulation of SDF dynamics for
non-orthogonal case, when we apply Girsanov Theorem in section 6.
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as a function of its current location10:

ST = S0 exp[
∫ T

0
(µt −

1
2
Vt)dt−

∫ T

0
(Et(Γs

tdJ
s
t ))]

× exp[
∫ T

0

√
VtdW

(1)
t (P )] exp[

∫ T

0
ln(1 + Γs

t )dJ
s
t ]

MT = M0 exp[
∫ T

0
−(rt +

1
2
(ζ(1)2

t + ζ
(2)2
t ))dt−

∫ T

0
Et(ΓM

t dJ
s
t )]

× exp[−
∫ T

0
ζ
(1)
t dW

(1)
t (P )−

∫ T

0
ζ
(2)
t dW

(2)
t (P )] exp[

∫ T

0
ln(1 + ΓM

t )dJs
t ]

where M0 is normalized to equal 1.

It is important to note here that the above equation for MT could also be written in terms of the

rotated non-orthogonal Brownian motions dW s
t (P ) and dW v

t (P ). However, when we apply Ito’s

formula to the non-orthogonal case, as a result, correlation terms will be added to the above

formula for MT . This could only be seen by considering a multi-dimensional version of Ito’s

formula, which will also be utilized later for derivations in this manuscript.

Another useful representation of SDF dynamics under P is11

Mt+dt = Mt exp[−(rt +
1
2
(ζ(1)2

t + ζ
(2)2
t ))dt− Et(ΓM

t dJ
s
t )] ∗ (8)

∗ exp[−ζ(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P )](1 + ΓM

t )dJs
t

In our model we will assume that size and occurrence of jump components are independent,

i.e. < Γi, Js >= 0, i = S,M . If we define the expected jump size and jump intensity to be

Γi and λs respectively, then Et(Γi
tdJ

s
t ) = Γiλtdt for i = S,M . Notice, that using Taylor series

expansion and the fact that (dt)n = 0, ∀n > 1 we have:

exp[−Et(Γi
tdJ

s
t )] = exp[−Γiλtdt] = 1− Γiλtdt (9)

Although the generic form of the SDF dynamics in (4) is known, the question remains about

how to model the free parameters (market prices of risks). In the next section we will show that

not any econometric specification of risk premiums is permissible, if we want to avoid arbitrage.

10Possibly, volatility dynamics could also be written down for VT as a function of Vt, (similar to Gourieroux
(2000), p. 251), where O-U volatility process has a closed form solution at least without jumps. However, in our
setup not only the volatility dynamics includes jumps, but also diffusion specification is of CIR (or ”square-root”)
type. Fortunately, we don’t need to use this result here because volatility is not a traded asset.

11Note that all results based on (t + dt)-type arguments are not mathematically rigorous and are provided
here as a ”quick and dirty” approach to finding solutions and developing intuition. For rigorous mathematical
treatment see cited references.
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5 No-Arbitrage Restrictions on the Free Parameters in SDF
dynamics

From the FTAP we know that No-Arbitrage implies the existence of a positive stochastic discount

factor M that prices all traded assets X (stock and bond) in our economy. Therefore, assuming

no dividend payments, MtXt must be a martingale and dynamics of all traded assets with price

X must satisfy the following martingale pricing equation12:

EP
t (d(MtXt)) = 0 (10)

or equivalently13

0 = EP
t (
dXt

Xt
+
dMt

Mt
+
dMt

Mt

dXt

Xt
) (11)

In the other direction (sufficiency), it can be shown that the pricing equation (10) rules out

arbitrage opportunities under natural conditions of dynamic trading strategies using replication

argument.

We know the dynamics under P of at least two traded assets: stock S and bond B. First, as we

have already mentioned above, a risk free bond is a traded security with dynamics dB
B = rtdt.

Plugging it in the equation above restricts the mean of the SDF dynamics EP
t (dMt

Mt
) = −rtdt.

Therefore, we can write:

EP
t (
dXt

Xt
) = rtdt− EP

t (
dMt

Mt

dXt

Xt
) (12)

Second, by plugging (4) and (2) in (12) the stock price observability imposes the following

restriction:

0 = MtSt((µt − rt)dt−
√
Vtζ

(1)
t dt+ Et(Γs

tΓ
M
t )λtdt) (13)

= (µt − rt)−
√
Vtζ

(1)
t + Et(Γs

tΓ
M
t )λt

or equivalently, by plugging (5) and (1) in (12):

0 = (µt − rt)−
√
Vt(ζs

t + ρζv
t ) + Et(Γs

tΓ
M
t )λt (14)

It is important to point out that the above restrictions are one and the same, because the

specification of dynamics in (2) comes from Cholesky decomposition of the covariance matrix in

(1) by rotating the diffusion terms in R2. Both specifications are equivalent and simply allow

for different prospective on the same stochastic process. Enforcing the restriction in terms of

ζ(1) automatically enforces the restriction in terms of ζs and ζv. There is still only one degree

of freedom in between ζ(1) and ζ(2) just as between ζs and ζv.
12Cochrane (2000) ”Asset Pricing” demonstrates how this relation naturally arises in a simple General Equi-

librium setting
13Using: d(MtXt) = Xt+dtMt+dt −XtMt = (Xt+dtMt+dt −Xt+dtMt) + (Xt+dtMt −XtMt) = Xt+dt(Mt+dt −

Mt) +Mt(Xt+dt −Xt) −Xt(Mt+dt −Mt) +Xt(Mt+dt −Mt) = XtdMt +MtdXt + dMtdXt

12



From discrete time econometric prospective, in order to avoid arbitrage, we must respect

the restriction in (14) when we set objective parameter values in order to simulate data, or

estimate parameters from the data by expressing one of the parameters as a function of the

remaining ones. In discrete time the equation (14) essentially contains T restrictions, because

the equality must be satisfied ∀t ∈ (0, T ). Therefore, we can not simultaneously set the mean µt

to be exogenous and model prices of risk as, say, a square root of volatility times an unknown

constant, because the relatively small number of free parameters cannot guarantee to satisfy T

restrictions. Therefore, either the mean µt must be treated as endogenous, or one of the risk

prices must be left unspecified and backed out from (14).

From continuous time asset pricing prospective, if we re-write the continuum of restrictions

in (14) as a ”risk premium map” µt = rt +
√
Vt(ζs

t + ρζv
t )− Et(Γs

tΓ
M
t )λt, then we gain another

interpretation of this restriction, namely that the stock price mean return is equal to the risk

free rate plus the adjustments (risk premiums) for the corresponding risk factors. Intuitively,

the instantaneous linearity of the risk premium adjustments comes from our ability to form only

linear payoff portfolios of securities used to enforce the no-arbitrage argument.

13



6 Risk Neutral Dynamics

One of the most powerful tools of Finance is the risk-neutral pricing. In general, an asset payoff

is not a martingale under objective measure due to the presence of risk premiums. Therefore,

unless risk premiums are all zero, an asset price is not equal to the expectation of its future

payoffs taken under objective (also called empirical, or observed) measure. However, given

an appropriate change of measure from objective to risk-neutral dynamics, the expectation

taken under the risk-neutral measure yields the correct price after discounting at the risk-free

rate. Radon-Nikodym theorem serves as a mathematical justification for this technique, while

Feynman-Kac solution14 demonstrates the equivalence of risk-neutral and fundamental PDE-

based approaches for pricing contingent claims. Because risk-neutral valuation has proven to be

an extremely convenient asset-pricing tool, we will rely on it in what follows.

6.1 Change of Measure for Diffusion processes

In order to implement the risk-neutral valuation approach we need to change the measure from

objective P to risk-neutral Q so that X0 =
∫ T
0 XtMtdP =

∫ T
0 XtdQ holds. Ignoring the jump

component for the moment (correction for which will be introduced later), we can use the

following famous result:

Theorem 2 Girsanov Theorem15:

Let Xt ∈ Rn be an Ito process of the form

dXt = µtdt+ θtdWt(P ); 0 ≤ t ≤ T (15)

where Wt(P ) ∈ Rm, µt ∈ Rn and θt ∈ Rn×m. Suppose there exists processes ζt ∈ Wm
H and

rt ∈Wn
H such that θtζt = µt − rt and assume that ζt satisfies technical Novikov’s condition.

Let Mt = exp[−
∫ t
0 ζsdWs(P )− 1

2

∫ t
0 ζ

2
sds]; 0 ≤ s ≤ t ≤ T . Define dQ = MTdP .

Then,

Wt(Q) =
∫ t

0
ζsds+Wt(P ); 0 ≤ s ≤ t ≤ T (16)

is a Brownian motion w.r.t. Q and in terms of Wt(Q) the process St has the stochastic integral

representation

dXt = rtdt+ θtdWt(Q); 0 ≤ t ≤ T, where (17)

dWt(Q) = ζtdt+ dWt(P ) (18)

14See Duffie (2001)
15See Oksendal ”Stochastic Differential Equations” 5th edition p.155. Note that using the change of measure

framework presented here we gain a mathematical interpretation of the SDF as a Radon-Nikodym derivative

14



Applying Girsanov’s theorem to our model we note that the above change of measure equality

is for Brownian motion dWt(P ) ∈ R2 with orthogonal elements dW (1)
t and dW (2)

t (otherwise the

specification of Mt above would have to be modified to correspond to the dynamics of SDF in

the economy where Brownian motions are not orthogonal). Therefore, for our model we can

re-write (17) as:(
dSt

dVt

)
=

(
rt

κQ(θQ − Vt)

)
dt+

√
Vt

(
1 0
ρ
√

1− ρ2

)(
dW

(1)
t (Q)

dW
(2)
t (Q)

)
(19)(

dW
(1)
t (Q)

dW
(2)
t (Q)

)
=

(
ζ
(1)
t

ζ
(2)
t

)
dt+

(
dW

(1)
t (P )

dW
(2)
t (P )

)

Lemma 1 By rotating the newly obtained orthogonal Brownian motions under Q we obtain a

version of the Girsanov Theorem for non-orthogonal Brownian motions:

dW s
t (Q) = (ζs

t + ρζv
t )dt+ dW s

t (P ) (20)

dW v
t (Q) = (ζs

t ρ+ ζv
t )dt+ dW v

t (P )

Proof:

Multiplying (18) by the rotation matrix we have:(
1 0
ρ
√

1− ρ2

)(
dW

(1)
t (Q)

dW
(2)
t (Q)

)
=

(
1 0
ρ
√

1− ρ2

)(
ζ
(1)
t

ζ
(2)
t

)
dt (21)

+
(

1 0
ρ
√

1− ρ2

)(
dW

(1)
t (P )

dW
(2)
t (P )

)
or equivalently(

dW s
t (Q)

dW v
t (Q)

)
=

(
1 0
ρ
√

1− ρ2

)(
ζ
(1)
t

ζ
(2)
t

)
dt+

(
dW s

t (P )
dW v

t (P )

)
(22)

Now we will invoke the fact that rotation of Brownian motions is just a mathematical trick and

we are still dealing with the same economy and the same SDF as a result of that. Therefore, we

have: (
ζ
(1)
t ζ

(2)
t

)( dW
(1)
t (P )

dW
(2)
t (P )

)
=
(
ζs
t ζv

t

)( dW s
t (P )

dW v
t (P )

)
(23)

Replacing the Brownian motions on the right-hand side with their orthogonal counterparts,

we notice that the coefficients pre-multiplying the orthogonal Browniain motions on both sides

could be thought of as coordinates and must be equal to each-other. Therefore, we have:(
ζ
(1)
t

ζ
(2)
t

)
=
(

1 ρ

0
√

1− ρ2

)(
ζs
t

ζv
t

)
(24)

15



Plugging it in (22) we get(
dW s

t (Q)
dW v

t (Q)

)
=

(
1 0
ρ
√

1− ρ2

)(
1 ρ

0
√

1− ρ2

)(
ζs
t

ζv
t

)
dt+

(
dW s

t (P )
dW v

t (P )

)
(25)

QED

Substituting the orthogonal dW (1)
t (P ) and dW (2)

t (P ) in the stock price dynamics with orthogonal

risk-neutral counterparts via Girsanov’s theorem, we notice that risk premium for the source of

risk i equals market price of risk i times the square root of volatility :
√
Vtζ

i
t .

6.2 Diffusion risk premium

Consider a special case when volatility is constant (not stochastic) and no jumps are present.

Then, the market is complete and the market price of risk ζs is determined in such a way that

the risk premium doesn’t depend on volatility: ζs = ηs
√
V = µ−r

V

√
V = µ−r√

V
leading to the risk

premium equal to µ− r. However, if volatility is stochastic, using GE framework we can show

that during a bear market the aggregate volatility tends to be higher. As a result, we expect

to see higher risk premiums for holding stock risk dW s
t associated with higher volatility values,

because in a bear market agents are more poor and as a result more careful with their investments

as the marginal utility cost of losing even more money becomes relatively too high. Similarly, a

long position in volatility risk sensitive instrument (e.g. option) becomes an insurance against

market fluctuations because options gain value when volatility increases, which means that the

risk premium for volatility risk dW v
t must be negative and decreasing in volatility. Therefore,

we want to select our market prices of dW s
t risk so that the resulting risk premiums are of

the form16 ηsVt and −ηvVt for stock and volatility risks respectively, where ηs and ηv are some

unknown constants that could be determined only by observing additional traded securities (e.g.

cross-section of options) in such economy. The negative sign in volatility diffusion risk premium

specification allows for convenient interpretation: increase in ηv leads to higher option prices.

Given the discussion above, for the diffusions we will use the following link between the market

prices of risks and risk premiums17:(
ζ
(1)
t

ζ
(2)
t

)
=

 ηs

−
ρηs+ ηv

σv√
1−ρ2

√Vt (26)

Using (24) we can derive the relationship between market prices of diffusion risks from the
16Certainly, any other increasing in volatility (decreasing for dW v

t risk) function would work - we just selected
the simplest one for the purposes of tractability.

17The same specification was used in Pan(2002)
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non-orthogonal formulation and the risk premium parameters:(
ζs
t

ζv
t

)
=

(
ηs + ρ ηv

σv

−ρηs − ηv

σv

) √
Vt

1− ρ2 (27)

It is easy to verify that both formulations are equivalent as they produce the same (desired) risk

premiums ηsVt and −ηvVt once plugged into the corresponding Girsanov theorem equation (19)

or (20) and stock price dynamics equation (2) or (1). This fact will be used in section 6.5 below.

6.3 Change of measure for Jump processes

In order to directly link the Girsanov Theorem with our model, we can simply move the jump-

related components to the left side. Now our model matches the specification in Girsanov

theorem and we can safely apply it. This method works because Jumps and Diffusions do not

mix. After that, we move the jump component back to the right-hand side, but due to the

change of measure that occurred, we need the distribution of the jump component under Q.

First, we find out how the jump intensity is going to change. In what follows we will denote the

expected jump size of the SDF by ΓM . Note, that although we can allow for the SDF jump size

mean to change over time, we will be using the above notation because there will be no need to

model the distribution of ΓM
t explicitly as it will become clear later.

It turns out that there is a one-to-one relationship for λt under P and Q:

λQ
t = (1 + ΓM )λP

t , ΓM 6= −1 (28)

Proof:

Define S∗t+dt = St+dt exp[−rtdt]. Using (8) and (9) we have

St = EP
t (
Mt+dt

Mt
St+dt) = EP

t [St+dt exp[−(rt +
1
2
(ζ(1)2

t + ζ
(2)2
t ))dt− Et(ΓM

t dJ
s
t )] ∗

∗ exp[−ζ(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P )](1 + ΓM

t )dJs
t ]

= EP
t [S∗t+dt exp[−1

2
(ζ(1)2

t + ζ
(2)2
t )dt− ζ

(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P )](1− ΓMλP

t dt)(1 + ΓM
t )dJs

t ]

=
∫

Ω(ζ
(1)
t ,W

(1)
t (P ),ζ

(2)
t ,W

(2)
t (P ),ΓM

t ,Js
t )
S∗t+dt exp[−1

2
(ζ(1)2

t + ζ
(2)2
t )dt− ζ

(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P )]

∗ (1− ΓMλP
t dt)(1 + ΓM

t )dJs
t dFP (W (1)

t (P ),W (2)
t (P ), Js

t )dF (ζ(1)
t , ζ

(2)
t ,ΓM

t )

=
∫

Ω(ζ
(1)
t ,ζ

(2)
t ,ΓM

t )

∫
Ω(Js

t )

∫
Ω(W

(1)
t (P ),W

(2)
t (P ))

S∗t+dt

∗ exp[−1
2
(ζ(1)2

t + ζ
(2)2
t )dt− ζ

(1)
t dW

(1)
t (P )− ζ

(2)
t dW

(2)
t (P )]

∗ dFP (W (1)
t (P ),W (2)

t (P ))(1− ΓMλP
t dt)(1 + ΓM

t )dJs
t dFP (Js

t )dF (ζ(1)
t , ζ

(2)
t ,ΓM

t )

Applying Girsanov theorem inside the integral over diffusions
∫
Ω(W

(1)
t (P ),W

(2)
t (P ))

and re-arranging

the order of integration, using the fact that diffusions and jumps don’t mix, we continue with
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the above derivation:

=
∫

Ω(ζ
(1)
t ,ζ

(2)
t ,ΓM

t )

∫
Ω(W

(1)
t (P ),W

(2)
t (P ))

∫
Ω(Js

t )
S∗t+dt

∗ (1− ΓMλP
t dt)(1 + ΓM

t )dJs
t dFP (Js

t )dFQ(W (1)
t (P ),W (2)

t (P ))dF (ζ(1)
t , ζ

(2)
t ,ΓM

t )

=
∫

Ω(W
(1)
t (P ),W

(2)
t (P ))

∫
Ω(ζ

(1)
t ,ζ

(2)
t )

∫
Ω(ΓM

t )
[S∗t+dt(dJ

s
t = 1)(1− ΓMλP

t dt)(1 + ΓM
t )λP

t dt

+ S∗t+dt(dJ
s
t = 0)(1− ΓMλP

t dt)(1− λP
t dt)]dF (ζ(1)

t , ζ
(2)
t ,ΓM

t )dFQ(W (1)
t (P ),W (2)

t (P ))

=
∫

Ω(W
(1)
t (P ),W

(2)
t (P ))

[S∗t+dt(dJ
s
t = 1)(1− ΓMλP

t dt)(1 + ΓM )λP
t dt

+ S∗t+dt(dJ
s
t = 0)(1− ΓMλP

t dt)(1− λP
t dt)]dF

Q(W (1)
t (P ),W (2)

t (P ))

=
∫

Ω(W
(1)
t (P ),W

(2)
t (P ))

[S∗t+dt(dJ
s
t = 1)(1 + ΓM )λP

t dt

+ S∗t+dt(dJ
s
t = 0)(1− (1 + ΓM )λP

t )dt]dFQ(W (1)
t (P ),W (2)

t (P ))

Define FQ(Js
t ) ≡ (1 + ΓM )FP (Js

t ). Then, λQ
t = (1 + ΓM )λP

t and we can continue to write

=
∫

Ω(W
(1)
t (P ),W

(2)
t (P ))

[S∗t+dt(dJ
s
t = 1)λQ

t dt

+ S∗t+dt(dJ
s
t = 0)(1− λQ

t )dt]dFQ(W (1)
t (P ),W (2)

t (P ))

=
∫

Ω(W
(1)
t (P ),W

(2)
t (P ),Js

t )
S∗t+dtdF

Q(W (1)
t (P ),W (2)

t (P ), Js
t )

= EQ
t [S∗t+dt] QED

Note, that assuming that jump intensity is the same under both measures is equivalent to setting

the mean jump size of the SDF to be zero. However arguable, this assumption is quite common

in the recent empirical literature, including Pan (2002), Eraker (2004), and Chernov (2003).

Now we turn our attention to the distribution of the stock jump size under the risk neutral

measure. The following result provides a link between the expected values of the stock jump

size under both measures:

EQ
t (Γs

t ) =
1

1 + ΓM
(EP

t (Γs
t ) + EP

t (ΓM
t Γs

t )) (29)

Proof:

Using (14) we have

rtdt = EQ
t [
dSt

St
] = EQ

t [µtdt+
√
VtdW

(1)
t (P ) + (Γs

tdJ
s
t − λP

t Γs
tdt)]

= EQ
t [(rt + ζ

(1)
t

√
Vt − EP

t (ΓM
t Γs

t ))dt+
√
VtdW

(1)
t (P ) + (Γs

tdJ
s
t − λP

t Γs
tdt)]

Applying (28) and the fact that due to Girsanov EQ
t (dWt(P )) + ζtdt = EQ

t (dWt(Q)) = 0 we get

(1 + ΓM )λP
t E

Q
t [Γs

t ]dt = λP
t (EP

t (Γs
t ) + EP

t (ΓM
t Γs

t ))dt−
√
VtE

Q
t [dW (1)

t (P )]− ζ
(1)
t

√
Vtdt

(1 + ΓM )EQ
t [Γs

t ] = EP
t (Γs

t ) + EP
t (ΓM

t Γs
t ) QED
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6.4 Jump risk premium

Note that in continuous time the jump risk premium equals −EP
t (ΓM

t Γs
t )λ

P
t = EP

t [Γs
t ]λ

P
t −

EQ
t [Γs

t ]λ
Q
t . Now, if we set18 ΓM = 0, λQ

t = λP
t = λt = λ0 + Vt−λ1, and ηj = µ − µQ =

EP [Γs]−EQ[Γs], then the jump risk premium can be written as−EP
t (ΓM

t Γs
t )λ

P
t = ηj(λ0+Vt−λ1).

Therefore using the above derivation and equation (27) the No-Arbitrage condition in (14) can

be restated as:

µt = rt + Vtη
s + λtη

j (30)

A more general19 result linking the joint distribution of the jump sizes under the two measures

could be found in Dai and Singleton (2003):

fQ(ΓM
t ,Γ

s
t ) =

1 + ΓM
t

1 + ΓM
fP (ΓM

t ,Γ
s
t ) (31)

By integrating out ΓM from the above, we can derive the distribution of jump size under risk

neutral measure: fQ(Γs
t ) = 1+EP

t [ΓM
t |Γs

t ]

1+EP
t [ΓM

t ]
fP (Γs

t ). Therefore, given the distribution of stock jump

size Γs
t under objective measure, the risk neutral dynamics of the jump size is uniquely deter-

mined by the specification of the conditional and unconditional means of the SDF jump size, i.e.

the conditional distribution of the SDF jump size given Γs
t under the objective measure. Now,

looking in the opposite direction: given fP (Γs
t ), choosing fQ(Γs

t ) implies certain EP (ΓM
t |Γs

t )

and EP
t [ΓM

t ].

The Jump component can be decomposed into two random variables Γs
t and dJs

t , which

could both contribute to the risk premium as a result of the change of measure. As we just

saw in (28), the contribution of dJs
t is fully controlled by our assumption about the mean of

the SDF jump size, while the contribution of Γs
t is determined in (31) by our assumption about

the conditional EP (ΓM
t |Γs

t ) and unconditional EP
t [ΓM

t ]. In most empirical literature the authors

chose not to discuss the later explicitly and simply assume some form of fQ(Γs
t ). As long as

no explicit assumptions about EP (ΓM
t |Γs

t ) and EP
t [ΓM

t ] were made, there is no problem with

such approach. The rationale is quite simple: we have no idea what these means should look

like. So, we might as well just model the final product fQ(Γs
t ) directly without causing any

inconsistencies. Of course, in doing that we are implicitly making some assumptions about the

means - no way around that!

Both Pan and Eraker argue that it is acceptable to allocate all the risk premium associated with

the jump in the jump size component by setting E(ΓM
t ) = 0. But then, they are forced to make

(implicit or explicit) assumptions about the conditional mean too. Notice, however, that if we
18Note that if we write down the discrete-time analog of this continuous-time model using Euler-discretization

scheme (3), the jump intensity will depend on the last period’s volatility: λt = λ0+Vt−1λ1, while the No-Arbitrage
restriction (14) becomes µt−1 = rt−1 + Vt−1η

s + λtη
j

19It is easy to verify that this result implies the relationship of means in (29), but the relationship of joint
densities is much harder to prove.
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allocate all the risk premium associated with the jumps in the dJs
t component, by assuming

that Γs
t and ΓM

t are orthogonal, in order to proceed with the change of measure we will only

have to model the value of E(ΓM
t ), which we can simply treat as a parameter. As a result, after

we have allocated the risk premium, Pan’s risk pricing choice will require ”bigger” assumptions

than putting all the premium inside dJs
t (Q).

Certainly economic implications of these risk pricing choices must be considered in General

Equilibrium setting. For example, Lucas economy, or CIR model could provide intuitive support

in favor of one or the other, the same way Heston (1993) motivated his choice of the diffusion risk

premium form. An empirical comparison of these jump risk premium assumptions is a potential

area of further research.

6.5 Applying the change of measure

We are finally ready to write down the dynamics of St under risk neutral measure Q by replacing

the objective parameters in (1) with their risk-neutral counterparts found in (20), (28), (29),

and enforcing the no-arbitrage restriction (14):

dSt

St
= (rt +

√
Vt(ζs

t + ρζv
t )− EP

t (Γs
tΓ

M
t )λP

t )dt (32)

+
√
Vt(dW s

t (Q)− (ζs
t + ρζv

t )dt)

+ Γs
t (Q)dJs

t (Q)− ((1 + ΓM )EQ
t (Γs

t )− EP
t (Γs

tΓ
M
t ))λP

t dt

dVt = κv(θ − Vt)dt+
√
Vtσv(dW v

t (Q)− (ζs
t ρ+ ζv

t )dt) + Zv
t dJ

v
t

and after simplification

dSt

St
= rtdt+

√
VtdW

s
t (Q) + Γs

t (Q)dJs
t (Q)− EQ

t (Γs
t )λ

Q
t dt (33)

dVt = (κv(θ − Vt)−
√
Vtσv(ζs

t ρ+ ζv
t ))dt+

√
VtσvdW

v
t (Q) + Zv

t dJ
v
t

where Cov(dW s
t (Q), dW v

t (Q)) = ρdt.

Unlike in the case of diffusions, where the risk premium (=expected change of return) happens

to cancel out with the corresponding change in the mean of dW i
t , in the case of jumps the picture

is more vague. Indeed, the expected change in the mean (as a result of the change of measure)

did cancel out with the risk premium associated with the corresponding jump. However, the

change of measure has more profound impact on the distribution of the jump component than

just changing its mean. Therefore, it is more convenient to write it as above, while imposing

the condition (31).

Now, if we want to write the RN dynamics in terms of Yt = ln(St), we will apply Ito’s Lemma

for Jump-Diffusion given above. Define ln(1 + Γs
t (Q)) = Zs

t and we have:

dYt = (rt −
1
2
Vt)dt+

√
VtdW

s
t (Q) + Zs

t dJ
s
t (Q)− EQ

t (Γs
t )λ

Q
t dt (34)

dVt = (κv(θ − Vt)−
√
Vtσv(ζs

t ρ+ ζv
t ))dt+

√
VtσvdW

v
t (Q) + Zv

t dJ
v
t

20



Using the relationship between market prices of risks and risk premium parameters derived in

(27) we get:

dYt = (rt − EQ
t (Γs

t )λ
Q
t − 1

2
Vt)dt+

√
VtdW

s
t (Q) + Zs

t dJ
s
t (Q) (35)

dVt = (κv(θ − Vt) + Vtη
v)dt+

√
VtσvdW

v
t (Q) + Zv

t dJ
v
t

rearranging we get

dYt = (rt − EQ
t (Γs

t )λ
Q
t − 1

2
Vt)dt+

√
VtdW

s
t (Q) + Zs

t dJ
s
t (Q) (36)

dVt = (κv − ηv)(
κvθ

κv − ηv
− Vt)dt+

√
VtσvdW

v
t (Q) + Zv

t dJ
v
t

defining κQ ≡ κv − ηv and θQ ≡ κvθ
κv−ηv we can write

dYt = (rt − EQ
t (exp[Zs

t ]− 1)λQ
t − 1

2
Vt)dt+

√
VtdW

s
t (Q) + Zs

t dJ
s
t (Q) (37)

dVt = κQ(θQ − Vt)dt+
√
VtσvdW

v
t (Q) + Zv

t dJ
v
t

Note that stock return dynamics above is no longer jump-compensated, as the stock price dynam-

ics was. The remnants of the stock price compensator are contained in the µQ = EQ
t (exp[Zs

t ]−1).

6.6 Example from DPS(2000)

The model specification under RN dynamics in (37) matches precisely (assuming zero-dividend)

the set up in DPS(2000) example 4.1, because the restriction µQ = Θ(1, 0)− 1 translates into

µQ =
∫

R2

exp[1Zs
t + 0Zv

t ]ν(Zt)dZt − 1 = EQ
t (exp[Zs

t ])− 1

=
∫ ∞

−∞
exp[Zs

t ]f(Zs
t )dZ

s
t − 1 =

∫ ∞

−∞
exp[Zs

t ](
∫ ∞

0
f(Zs

t |Zv
t )f(Zv

t )dZv
t )dZs

t − 1

=
∫ ∞

0
(
∫ ∞

−∞
exp[Zs

t ]f(Zs
t |Zv

t )dZs
t )f(Zv

t )dZv
t − 1

If we make the same assumption as DPS(2000) in example 4.1 that Zs
t |Zv

t ∼Q N(µQ
s +ρJZ

v
t , σ

2
s)

and f(Zv
t ) =

exp[−Zv
t

µv
]

µv
, then we can evaluate

µQ =
∫ ∞

0
exp[µQ

s + ρJZ
v
t + 0.5σ2

s ]
exp[−Zv

t
µv

]

µv
dZv

t − 1

= exp[µQ
s + 0.5σ2

s ]
1
µv

1
1
µv
− ρJ

∫ ∞

0
(

1
µv

− ρJ) exp[−(
1
µv

− ρJ)Zv
t ]− 1

=
exp[µQ

s + 0.5σ2
s ]

1− µvρJ
− 1

This way we can derive formulas for µQ and µ in all models presented in subsection (3.5).
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Note that in this example DPS(2000) doesn’t even mention objective parameters, risk premiums,

or SDF. Everything is modelled in terms of RN parameters. As a result, they are free to assume

any RN distribution of the jump size ν(Zs
t ) without violating no-arbitrage conditions.

For our model, which goes beyond the example in DPS(2000), in that it reconciles RN and

objective dynamics, it is useful to mention that assuming20:

Zs
t |Zv

t ∼P N(µs + ρJZ
v
t , σ

2
s) and f(Zv

t ) =
exp[−Zv

t
µv

]

µv

we can evaluate under the objective measure:

Et(exp[Zs
t ]) = exp[µs+0.5σ2

s ]
1−µvρJ

, so µP = exp[µs+0.5σ2
s ]

1−µvρJ
− 1

While discussing the jump transform Θ(·, ·) let’s extend the above derivation to establish another

result that will be used in the next section for some complex numbers u, β:

Θ(u, β) = EQ[exp(uZs + βZv)] (38)

=
∫ ∞

0
exp(Zvβ)f(Zv)[

∫ ∞

−∞
exp(Zsu)f(Zs|Zv)dZs]dZv

=
∫ ∞

0
exp(Zvβ) exp[u(µQ

s + ρJZ
v) + 0.5u2σ2

s ]
exp[−Zv

µv
]

µv
dZv

=
exp[µQ

s u+ 0.5σ2
su

2]
1− µvρJu− µvβ

20Note that such combination of RN and Objective distributions of jump size implies that only parameter µs

changes, keeping the rest of the distribution the same after the change of measure from P to Q.

22



7 Option Pricing

In this section we present our derivation of the option Pricing formula in continuous time for

Affine Jump-Diffusion Stochastic Volatility model (37) with time-varying (stochastic) intensity

λQ
t = λP

t = λt = λ0 + Vt−λ1 and jump size transform defined as in section (6.6) above. We

consider the most general model (SVSCJ) as well as some special cases using Fourier transform

approach. After we set up and solve Riccati equations for our model dynamics, we will obtain

the time-t conditional Fourier transform of YT specific to our model, which we can subsequently

plug in the option pricing equation on p. 1353 of DPS(2000) to get the result. We will show that,

although a close-form solution to Riccati ODEs could be found for SVJ model with stochastic

jump intensity (SVSJ) and SVCJ with constant intensity, only numerical solution is known for

SVSCJ, which is the most general model that we discuss in this paper.

7.1 Setting up the fundamental PDEs using Martingale approach

We are looking for the time-t transform of YT defined as ψt(u, Yt, Vt, T − t) = exp(−r(T −
t))EQ

t [exp(uYT )], where u is some complex number. This quantity is not a Martingale, because

it depends on the current time t. One commonly used trick is to construct a martingale Ψ =

exp(−r(t − 0))ψt and use the martingale property that EQ
t [dΨ] = 0 to construct the identity

leading to a partial differential equation (PDE).

If ψt was defined as ψt = exp(−r(T − t))EQ
t [g(YT )] for some arbitrary payoff g(YT ), such

method would result in the identity that is often referred to as the fundamental PDE for con-

tingent claims, and ψt = exp(−r(T − t))EQ
t [g(YT )] is called its Feynman-Kac solution under

some technical conditions21. However, for most AJD models, except for the simplest ones, it

would be inefficient to solve such PDE, because generally only numerical solutions are avail-

able, even for the simplest derivatives like European call with exercise price K and payoff

g(YT ) = Max[0, exp(Y )−K]. Fortunately, a close form solution to the PDE for a broad range

of affine dynamics of the underlying could be found when ψt is defined as the time-t transform

of YT , which makes the practical option pricing application of DPS(2000) so much more efficient

than solving the fundamental PDE numerically or using Monte-Carlo methods to evaluate the

expectation under risk-neutral measure in the Feynman-Kac solution.

Let Xt = (Yt, Vt) denote the current state variable at time t. We use the multi-dimensional

version of Ito’s Lemma (7) for jump-diffusions to calculate ∀(t < T )

EQ
t [dΨ] = (

∂Ψ
∂t

+ (µQ(Xt))′ΨX + tr[
σ2(Xt)

2
ΨXX ])dt (39)

+ (λ0 + Vtλ1)dtE
Q
t [Ψ(Xt + Γt)−Ψ(Xt)],

where µQ(Xt) and σ2(Xt) are drift and diffusion coefficients of the two-dimensional state variable
21see Duffie (2001)
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Xt under the RN measure, which in the context of our model (37) equal:

µQ(Xt) =
(
rt − λ0µ

Q

κQθQ

)
+
(

0 −1
2 − λ1µ

Q

0 −κQ

)(
Yt

Vt

)
(40)

σ2(Xt) =
(

1 ρσv

ρσv σ2
v

)
Vt +

(
0 0
0 0

)
Yt

=
(
Yt Vt

)
(

0
1

) (
0
ρσv

)
(

0
ρσv

) (
0
σ2

v

)


It is obvious that µQ(Xt))′ΨX =
∑2

i=1 ΨXiE
Q
t (dX i

t) and it is straightforward to verify that

tr[σ2(Xt)ΨXX ]dt =
∑2

i=1

∑2
j=1 ΨXiXjdX idXj = (ΨY Y + 2ρσvΨY V + σ2

vΨV V )dt,

which explains why it is possible to replace the single- and double-summations used in multi-

dimensional Ito’s Lemma (7) with matrix representation given above. Both notations have their

advantages and with proper care could be used interchangeably.

Using the martingale property EQ
t [dΨ] = 0 we obtain the PDE that we need to solve for ψt

subject to boundary condition ψT = exp(uYT ). The most common approach to solving PDEs

is to guess at the solution form (with some unknown parameters α, β, ...), plug it in, and back

out the unknown parameters by equating the coefficients on the two sides of the equation.

DPS(2000) suggests to guess that the solution to above PDE is of the following form:

ψt(u, Yt, Vt, T − t) = exp(α(t) + β(t) ·Xt) (41)

resulting in Ψ = exp(−rt+ α(t) + β(t) ·Xt), where α(t) ∈ C1 and β(t) = (u, β(t)) ∈ C2.

Plugging it in (39) we get22:

0 = (−rtΨ + Ψ(
∂α(t)
∂t

+ (Xt)′
∂β(t)
∂t

) + (µQ(Xt))′β(t)Ψ (42)

+ β′(t)
σ2(Xt)

2
β(t)Ψ)dt+ (λ0 + Vtλ1)dtE

Q
t [Ψ exp(β(t)Γt)− 1]

or equivalently using (40)

0 = −rt +
∂α(t)
∂t

+ (Xt)′
∂β(t)
∂t

+
(
rt − λ0µ

Q κQθQ
)
β(t) (43)

+ (Xt)′
(

0 0
−1

2 − λ1µ
Q −κQ

)
β(t)

+
1
2
β′(t)[(Xt)′


(

0
1

) (
0
ρσv

)
(

0
ρσv

) (
0
σ2

v

)
]β(t)

+ (λ0 + (Xt)′
(

0
λ1

)
)EQ

t [exp(β(t)Γt)− 1]

22β′(t)σ2(Xt)
2

β(t) defined as in DPS(2000) to be a vector in C2
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and comparing the coefficients on X1
t and X0

t from both sides of the above identity we get the

model-specific system of ODEs23 the first of which may be regarded as Riccati Equation for

some jump transform and intensity specification:

∂β(t)
∂t

= (
1
2

+ λ1µ
Q)u+ κQβ(t)− 1

2
(u2 + 2uρσvβ(t) + σ2

vβ
2(t)) (44)

− λ1(Θ(u, β(t))− 1)
∂α(t)
∂t

= rt − (rt − λ0µ
Q)u− κQθQβ(t)− λ0(Θ(u, β(t))− 1) (45)

with boundary conditions β(T ) = (u, 0) and α(T ) = 0.

7.2 Solving the Riccati equation

Given some solution for the first ODE, subject to boundary conditions the solution for the

second ODE could be found by direct integration. Unfortunately, in general for SVSCJ model,

no close-form solution to the first ODE equation is known and we must resort to numerical

methods in order to find β(t), which becomes an excessive computational burden for the practical

implementation of the comprehensive joint parameter estimation that we conduct in the main

paper.

The problem with finding a close-form solution lies with the λ1(Θ(u, β(t)) − 1) term, aside for

which the first ODE would be a Riccati equation with known analytical close-form solution.

Following DPS (2000) example (4.1) and reducing SVSCJ to SVCJ model (setting λ1 = 0)

we can completely eliminate the difficulty-causing term. Alternatively, as in Bates (1997) and

Pan (2002), we can reduce SVSCJ to SVSJ, which will result in removing β(t) from the jump

transform Θ(u, β(t)). In both cases we will get a well-known Riccati equation and without

formally deriving the solution using established ODE techniques, we will again guess at the

solution.

For convenience we make a change of variable τ = T − t and guess that

β(τ) = − a(1− exp(−γτ))
2γ − (γ + b)(1− exp(−γτ))

(46)

α(τ) = rtτ(u− 1)− λ0τ(1 + λ0µ
Qu)

− κQθQ

σ2
v

((γ + b)τ + 2 ln[1− γ + b

2γ
(1− exp(−γτ))])

+ λ0

∫ τ

0
Θ(u, β(s, u))ds

where

a = u(1− u)− 2λ1(Θ(u, β)− 1− µQu) (47)

b = σvρu− κQ

γ =
√
b2 + aσ2

v

23The equivalent system of ODEs could also be found in general form for an arbitrary AJD process in DPS(2000)
equations (2.5)-(2.6).
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The jump transform Θ(u, β) was derived in section (6.6) equation (38) and its analytic integral∫ τ
0 Θ(u, β(s, u))ds could be found in DPS(2000) p.1362. Although in the case of SVSCJ model

a is a function of β, which makes the above proposed solution invalid24, a is independent of β

both in SVCJ and SVSJ models, because in the SVCJ case λ1 = 0 and in SVSJ case the jump

size transform Θ(u, β) = exp[µQ
s u+ 0.5σ2

su
2] by setting µv = 0 in (38).

Now we can check the proposed solution for both models simultaneously!25 by plugging it in

(44). Taking the change of variable τ = T − t into account, define e = exp(−γτ) and consider

the left-hand side of the first Riccati equation:

LHS1 =
∂β(t)
∂t

= −∂β(τ)
∂τ

=
aeγ((γ − b) + (γ + b)e) + a(1− e) + (γ + b)γe

(γ − b) + (γ + b)e
(48)

=
2aγ2e

((γ − b) + (γ + b)e)2

Next, consider the right-hand side (RHS) of the Riccati equation:

RHS1 = −1
2
[−(u(1− u)− 2λ1(Θ(u, β)− 1− µQu)) + 2bβ + σ2

vβ
2] (49)

= −1
2
[−a+ 2bβ + σ2

vβ
2]

Notice that in this form our RHS1 exactly matches the corresponding RHS in DPS(2000)

example. We could have stopped here, but we will continue to plug in for β from (46) in (49)

to get:

RHS1 = −1
2

[−a(γ − b+ (γ + b)e)2 + 2b(−a)(1− e)(γ − b+ (γ + b)e) + σ2
va

2(1− e)2]
((γ − b) + (γ + b)e)2

(50)

By scrupulously simplifying the numerator in the above expression one will notice that all e0

and e2 terms cancel each-other out and the remaining term in the numerator equals −4aγ2e.

∴ LHS1 = RHS1 � (51)

The second ODE equation is exactly identical to its counterpart in DPS(2000) with λ replaced by

λ0. Therefore, the same solution based on direct integration applies. Line-by-line computational

verification of the solution is very similar to the first equation but too long, cumbersome, and

non-essential for the purpose of this write-up and could be omitted.

Now that we have found the time-t transform of YT defined as ψt = exp(−r(T−t))EQ
t [exp(uYT )],

we can price calls and puts in our economy using the Fourier Transform Inversion-based formulas

(2.9) and (2.12) in DPS(2000) or equivalently Black-Scholes-style formula in Pan(2002).

24It is easy to verify by plugging in the proposed solution in (46) that, as a is a function of β, when we evaluate
the partial derivative on the left-hand side of the Riccati equation, it quickly becomes too messy to result in the
right-hand side.

25This beautiful fact is made possible due to the high ”compartmentalization” of formulas achieved through the
clever introduction of surrogate variables (a, b, γ,Θ(·, ·)), exploring the underlying linear structure of the problem
in DPS(2000).
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7.3 Fourier transform-based pricing formula

Finally, we can write-down the pricing formula for Call option and using a Put-Call parity find

the Put option price. DPS (2000) has shown how ψt(u, Yt, Vt, τ) that we have found above (see

equations (41) and (46)) could be used to calculate option price by inverting the transform of

the option payoff function26. Here we present a slightly modified Black-Scholes style formula of

the Call option price Ct with exercise price K as a function of all risk-neutral parameters27 Θ∗

involved in the specification of risk-neutral dynamics in equation (37):

Ct (St, Vt, rt,Θ∗,K) = StP1 −KP2 (52)

P1 =
ψt(1, Yt, Vt, τ)

2
− 1
π

∫ ∞

0

Im(ψt(1− iz, Yt, Vt, τ) exp[iz ln( K
St

)])
z

dz

P2 =
ψt(0, Yt, Vt, τ)

2
− 1
π

∫ ∞

0

Im(ψt(0− iz, Yt, Vt, τ) exp[iz ln( K
St

)])
z

dz

where Im(·) denotes the imaginary component of a complex number.

Using Put-Call parity we can now find the put price Pt:

Pt(St, Vt, rt,Θ∗,K) = Ct(St, Vt, rt,Θ∗,K)− St +K exp(−τrt) (53)

26See DPS (2000) Proposition 2 for derivation and detailed mathematical treatment
27Note that solution for ψt(·, ·, ·, ·) depends on risk-neutral parameters - that is how Θ∗ enters the call pricing

formula (52).
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8 Conclusion

Finding good parameter estimates of security dynamics has been an extremely important area

of research for many years. There is an enormous value, not only for market traders trying to

make profit but also for macroeconomic policy-making,28 in being able to improve estimates

and forecasting ability of the future dynamics of the key market indices, in particular S&P500.

In the past, due to the lack of continuous-time asset-pricing theory, econometric methods, and

computing power, econometricians had to restrict the estimation information set to the prices

of the underlying securities themselves. However, current advancements in the above fields and

technology allow us to augment the estimation information set with generous amount of data

contained in the panel of options written on the underlying securities, which should help us

get a better grip on the latent factors (especially volatilities) in our continuous-time models.

Although this valuable information shouldn’t be discarded in analyzing the dynamics of the

underlying, drawing the link between option prices and parameters of the underlying through

no-arbitrage asset-pricing world happens to be quite technical for most econometricians, while

researchers trained in theoretical asset-pricing often lack the expertise to conduct econometric

inference at the level of sophistication that these non-linear state-space models require. This

manuscript has provided the details necessary for proper implementation of asset-pricing results

in the econometric models of interest.

28Hordahl and Vestin (2005) claim that central banks tend to underestimate the risk premia and use risk-neutral
parameter estimates (obtained by analyzing a cross-section of options) as if they were objective parameters of
market dynamics, which leads to significant forecasting errors.
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