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Abstract

We provide bounds on match utilities that assure individual rationality is satis�ed
in the matching protocols discussed in the paper. We also detail extensions to the
model described in the body of the paper for alternative matching protocols (a simple
�xed-window centralized protocol and a discretionary setting with random priority),
asymmetric environments, richer type sets, and di¤erent arrival processes. Last, we
present additional proofs associated with the paper�s results.

1 Individual Rationality

Throughout the paper we assumed that agents leave the market only after being matched.

Agents do not leave the market unmatched, regardless of their expected utility from staying

in the market. Certainly, L-squares or l-rounds sometimes stay in the market simply for lack

of available agents who will match with them. Therefore, the expected continuation payo¤ for

some agents can sometimes be less than zero even when Ux(y) > 0 for all x; y. We now provide

a bound on the value of remaining unmatched, or the value of an outside option agents have,

that assures all the matching protocols we discuss are individually rational. Notice that since,

from Corollary 3, the discretionary threshold is higher than the optimal threshold, it su¢ ces

to �nd such a bound for the discretionary process.

In the discretionary process under FIFO,H-squares or h-rounds always have the possibility

of matching with l-rounds or L-squares instantaneously when they decide to wait in the

market. Therefore, when deciding to wait they expect an even greater utility and individual

rationality always holds for them, as long as the outside option is not greater than zero.

Consider now l-rounds (analogously, L-squares). A l-round who is k-th in line can always

declare all squares as acceptable in each period. By construction, k � �kfifo: The time between
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arrivals of L-squares is distributed geometrically with probability 1� p: Therefore, with such
a strategy, the expected time for the l-round to match with a L-square is at most k=(1� p);

yielding a match utility of Ul(L): The wait time till matching with a L-square could be

even shorter if l-rounds who precede the l-round in question are willing to match only with

H-squares. Furthermore, the l-round could end up matching with an H-square before k L-

squares arrive at the market. It follows that such a strategy guarantees an expected utility of

at least

Ul(L)�
kc

1� p
� Ul(L)�

�kfifoc

1� p
� Ul(L)�

p

1� p
(Uh(H)� Uh(L)) � Umin:

If l-rounds follow a di¤erent strategy in equilibrium, their expected utility must be at least as

high. Therefore, as long as the value of remaining unmatched is lower than Umin, individual

rationality holds under both the optimal and the discretionary processes (analogous calcula-

tions follow for L-squares and, under full symmetry of utilities, the bound corresponding to

them is also Umin). In addition, we show later in this Online Appendix that both the LIFO

protocol and the optimal �xed-window mechanism entail less waiting than under the FIFO

protocol. Thus, the construction above guarantees that this bound on remaining unmatched

assures individual rationality for the LIFO protocol and the �xed-window protocol as well.

2 Alternative Matching Protocols

In this section we study two alternative matching protocols: in the �rst one, a centralized

clearinghouse matches individuals at �xed time intervals. In the second one, agents form

matches in a discretionary setting in which, at every period, they are ranked according to a

uniformly random priority rule. We compare the welfare performance of these protocols to

that generated by the optimal mechanism as well as the discretionary protocols (FIFO and

LIFO) analyzed in the paper.

2.1 Matching with Fixed Windows

We consider the class of mechanisms that are identi�ed by a �xed-window size� every �xed

number of periods, the e¢ cient matching for the participants who have arrived at the market

in that time window is formed and the market is cleared. Larger windows then allow for thicker

markets and potentially greater match surplus. However, larger windows also correspond to
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longer expected waiting times for participants. We analyze the optimal �xed window. While

the welfare it generates is still lower than that produced by the optimal mechanism, it may be

substantially greater than that produced by the discretionary process under FIFO and LIFO.

The proofs of these results are presented in Section 6 below.

The arrival of squares and rounds is the same as that discussed so far. When �xed matching

windows are used, a window of some size n governs the process. Namely, every n periods,

the most e¢ cient matching pertaining to the n squares and n rounds who arrived within that

window is implemented.

Suppose that kH and kh are the number of H-squares and h-rounds who arrived during

a window of n time periods, respectively. Given our assumptions on match utilities, e¢ cient

matchings correspond to a unique distribution of pair-types (number of (H; h) pairs, (H; l)

pairs, etc.) and generate the maximal number of (H; h) and (L; l) pairs. The total matching

surplus generated by a matching as such is

S(kH ; kh) �
�
khUHh + (kH � kh)UHl + (n� kH)ULl if kH � kh;
kHUHh + (kh � kH)ULh + (n� kh)ULl otherwise.

Consider now the expected waiting costs when the window size is n. The �rst square and

round to arrive wait for n � 1 periods, the second square and round to arrive wait for n � 2
periods, etc. Thus, the total waiting cost is

2c [(n� 1) + (n� 2) + � � �+ 0] = cn(n� 1):

Therefore, the net expected welfare for each square-round pair generated by a window size

n is

Wn �
1

n

X
0�kh;kH�n

�
n

kH

��
n

kh

�
pkHH (1� pH)

n�kHpkhh (1� ph)
n�khS(kH ; kh)� c(n� 1):

Notice that for any window size n, the matching surplus per pair S(kH ; kh)=n is at most

UHh, while the expected waiting costs per pair are c(n�1): Denote by nmax the largest window
size n such that UHh � c(n� 1): Every window of size n > nmax would then generate a lower

welfare than that generated by a window of size 1, corresponding to instantaneously matching

individuals. In particular, an optimal window size exists within the �nite set f1; 2; :::; nmaxg.

2.1.1 Optimal Window Size

A characterization of the precise optimal window size is di¢ cult to achieve, so we identify

bounds on the optimal window size. Later, we will �nd bounds on the welfare generated by
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using �xed windows and compare them to the welfare generated by the optimal mechanism

as well as the discretionary process.

Consider the ex-ante marginal bene�t produced by increasing the window size from n to

n+1 that is incurred by the �rst n square-round pairs who arrive at the market. Suppose that

an e¢ cient matching corresponding to the �rst n pairs generates at least some mismatches

(i.e., (H; l) or (L; h) pairs). The (n + 1)-th pair could be bene�cial for the �rst n pairs by

correcting a mismatch. If there is no mismatch among the �rst n pairs, expanding the window

size only leads to additional waiting costs for the �rst n pairs.

Denote the probability that any e¢ cient matching with the �rst n squares and rounds has

a mismatch (i.e., there is an unequal number of H-squares and h-rounds) by

Pr (jkH � khj � 1;n) :

Since we assumed an identical distribution of types of squares and rounds, an e¢ cient

matching of n pairs has mismatches of type (H; l) or (L; h) with equal probability. A mismatch

of type (H; l) is corrected by a new (n+1)-th pair of type (L; h), which occurs with probability

p(1� p), and the total bene�t for the pair of originally mismatched square and round is

UH(h) + Ul(L)� UH(l)� Ul(H):

A similar derivation follows for the bene�t of �correcting�a mismatched pair of type (L; h).

Conditional on any e¢ cient matching entailing a mismatch, the expected bene�t to the �rst

n square-round pairs is then

p(1� p)

2
(UH(h) + Ul(L)� UH(l)� Ul(H))

+
p(1� p)

2
(Uh(H) + UL(l)� Uh(L)� UL(l)) ;

which is equal to
p(1� p)U

2
:

Therefore, the ex-ante marginal welfare obtained from expanding the window size from n to

n+ 1 for each of the n �rst square-round pairs is:

�+Wn �
p(1� p)U

2n
� Pr (kH 6= kh;n)� 2c:

Then, a necessary condition for the optimal window size no is

�+Wno � 0 � �+Wno�1: (1)

4



As mentioned above, it is di¢ cult to obtain a closed-form solution for the optimal window

size. The following proposition utilizes inequality (1) to establish bounds on no.1

Proposition B1 (Optimal Window Size)

1. An upper bound for the optimal window size is given by

no � p(1� p)U

4c
:

2. There exists c� such that, for any c < c�, a lower bound for the optimal window size is

no > (2p(1� p))
1
3

�
UHh � ULl

c

� 2
3

� (2p(1� p))
1
3 (U=c)

2
3 :2

Recall that U captures the extent to which preferences exhibit super-modularity, the wel-

fare advantage of an assortative matching relative to an anti-assortative one. Intuitively, the

bounds on the optimal window size increase with U and decrease with the cost of waiting.

2.1.2 Welfare Bounds for Fixed Windows

If the waiting cost c is small so that the optimal window size is large, we expect to have an

approximate fraction p of H-squares and h-rounds, in which case per-pair surplus is close to

S1: The bounds on the optimal window size allow us to provide an approximation of how far

the match surplus is from S1 and how costly the wait is. The following proposition illustrates

the resulting bounds on the welfare generated by the optimal window size.

1The di¢ culty stems from the fact that inequality (1) depends crucially on

Pr (kH 6= kh;n) = 1�
nX
l=0

��
n

l

�
pl(1� p)n�l

�2
;

and state-of-the-art combinatorics has little to say about this function�s behavior with changes in n.
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Proposition B2 (Fixed-Window Welfare)

1. A lower bound on the optimal �xed-window welfare is given by

W fix(c) � S1 � min
n2fbmc;dmeg

 r
p(1� p)

2n
(UHh � ULl) + c(n� 1)

!
;

where m � 1
2
(p(1� p))1=3

�
UHh�ULl

c

�2=3
.3

2. There exists c� such that, for any c < c�, an upper bound on the optimal �xed-window

welfare is given by

W fix(c) � S1 � 2�2=3(p(1� p)c)1=3(UHh � ULl)
2=3 + c

Notice that the optimal window size is asymptotically e¢ cient, as we have

lim
c!0

W fix(c) � lim
c!0

S1 � (3=2)(p(1� p)c)1=3(UHh � ULl)
2=3 + c = S1:

However, the convergence occurs at a lower speed compared to the optimal mechanism

and the discretionary process under LIFO. From Corollary 1, the proof of Corollary 5 (see

equations (7) and (10) in Section 6 below), and Proposition B2:

Corollary B1 (Relative Performance of Fixed Window Mechanisms) We have

lim inf
c!0

S1 �W fix(c)

S1 �W opt(c)
c1=6 � (UHh � ULl)

2=3

27=6(p(1� p))1=6U1=2
; and

lim inf
c!0

S1 �W fix(c)

S1 �W lifo(c)
c1=6 � 3

2

�
UHh � ULl
p(1� p)

�1=6
:

The corollary suggests that the optimal �xed-window mechanism provides a substantial

improvement over the discretionary process under FIFO but is inferior to the discretionary

process under LIFO.

3As c! 0, the lower bound becomes arbitrarily close to

S1 �
r
p(1� p)
2m

(UHh � Ull) + c(m� 1) = S1 � (3=2)(p(1� p)c)1=3(UHh � ULl)2=3 + c:
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2.2 Uniformly Random Priority Protocol

We now consider a discretionary setting governed by a random priority rule. In particular,

agents play a game similar to the one described in Section 4 of the paper, but, after a new pair

of agents arrive at the market, agents are ranked according to a uniform random protocol.

After priorities realize, agents submit demands sequentially according to their ranks, and the

market clears.4

We characterize stationary� strategy pro�les that satisfy certain conditions necessary for

equilibrium. To make our analysis tractable, we make the following two exceptions to the

uniformly random protocol:

Assumption B1

1. Upon arrival of a congruent pair (either (H; h) or (L; l)), both new agents are

ranked at the top of the queues of their respective types, and

2. Upon arrival of an incongruent pair (either (H; l) or (L; h)), both new agents are

ranked at the bottom of the queues of their respective types.

The �rst part of Assumption B1 implies that, if an (H; h) pair arrives, the new agents

match with one another and leave. Therefore, the queue of agents waiting remains the same

as in the previous period. Note also that an arrival of a (L; l) pair does not a¤ect the existing

H-squares�(and h-rounds�) decisions, because an H-square always has a l-round available to

match with. Therefore, the �rst part of Assumption B1 implies that the arrival of a congruent

pair leaves the preexisting H-squares�and h-rounds�positions una¤ected. The second part

of Assumption B1 guarantees that once an H-square decides to wait upon arrival, she will

continue to wait in the following period upon an arrival of an (H; l) pair. In fact, when an

H-square arrives with a l-round and �nds too many H-squares present in the market, it is the

new H-square who may decide not to wait and demand a l-round, while all existing H-squares

continue to wait and demand h-rounds.

Suppose that all H-squares play a stationary strategy  H with a threshold �kH . At each

period t, after a new pair arrives and priority ranks are realized, let nh be the number of

4The assumption that priorities are realized before demands are submitted allows us to characterize each
player�s decision as a (MDP ), where an agent�s per-period payo¤ function is deterministic.
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h-rounds available. Then, an H-square i who is ranked as qi-th demands an h-round if and

only if qi � nh + �kH .

We use an absorbing Markov chain to compute each H-square�s, say player i�s, expected

total payo¤. The Markov chain is de�ned by the value of k�H , where the event time � starts

at 0 and increases for each arrival of (H; l) or (L; h). The state space is f1; 2; : : : ; �kH ; hg with
�kH transient states and one absorbing state h. The probability transition matrix is

P =

�
Q R
0 1

�
; where Q =

266666664

0 1
2

0 � � � 0
1
4

0 1
2

� � � 0
...

...
...

. . .
...

0 � � � 1
2

�
1� 1

�kH�1

�
0 1

2

0 � � � 0 1
2

�
1� 1

�kH

�
1
2

377777775
and R =

2666664
1
2
1
4
...
1

2(�kH�1)
1
2�kH

3777775 :

Let N � (I�kH � Q)�1 and T � N � 1. The absorbing Markov chain with an initial state
k 2 f1; 2; : : : ; �kHg is absorbed by state h in Tk expected number of event-time periods. Note
that Tk is increasing in k as player i with a larger initial state k expects to wait longer. In

particular, T�kH is increasing in
�kH .

An H-square decides to wait upon arrival as long as

UH(h)�
T�kHc

2p(1� p)
� UH(l); (2)

or equivalently,

T�kH �
2p(1� p) (UH(h)� UH(l))

c
:

Let �kuni be the maximal integer satisfying (2), or �kuni = 0 if the inequality does not hold

even for �kH = 1. Therefore, the queue for H-squares can increase up to �kuni. In any period,

when the number of H-squares is strictly larger than �kuni, the H-square i who is ranked last

(i.e., qi > nh+ �kuni) bene�ts from demanding and matching with a l-round. On the other

hand, the queue for H-squares grows to at least �kuni � 1 whenever the number of H-squares
arriving is su¢ ciently larger than the number of h-rounds. In fact, if all H-squares use a

stationary strategy  H with threshold �kH < �kuni, a new H-square i, who �nds no available

h-round but �kH existing H-squares, has a strict incentive to deviate perpetually by using the

threshold �kH + 1. Agent i�s expected continuation payo¤ from the deviation is then even

higher than what it would be were all other H-squares used the threshold �kH + 1 � �kuni.
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Figure 1: Thresholds of Optimal, LIFO, Random Priority, and FIFO Matching

While in the absence of a closed-form representation for �kuni the comparisons between �kuni,

the optimal threshold �kopt, and the equilibrium thresholds under FIFO and LIFO (�kfifo and
�klifo) are di¢ cult to analyze, we run simulations for the same parameter values corresponding

to Figures 2 and 3 in the main text: UH(h) = Uh(H) = 3; UH(l) = Uh(L) = UL(h) = Ul(H) =

1; UL(l) = Ul(L) = 0; and p = 0:3: Figures 1 and 2 here suggest that the random priority

generates outcomes, in terms of both behavior and welfare, between those generated by FIFO

and LIFO. In particular, random priority generates less waiting than the FIFO protocol, and

more waiting than the LIFO protocol (Figure 1). The welfare gap relative to the optimal

protocol is also between that generated by LIFO and FIFO (Figure 2).

3 Asymmetric Markets

In the body of the paper, we assumed a symmetric environment in terms of waiting costs and

type distributions. As we discuss below, for our characterization of the optimal mechanism,

asymmetries in waiting costs across market sides are not crucial. However, for the discretionary

setting, the additional symmetry in utility that we imposed (namely, the assumption that

UH(h) � UH(l) = Uh(H) � Uh(L)), as well as the assumption of identical waiting costs for

squares and rounds, could be important. In this section, we consider a market with asymmetric

type distributions, utilities, and waiting costs. We characterize the optimal mechanism in such
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Figure 2: Welfare Gaps of LIFO, Random Priority, and FIFO relative to the Optimal Mech-
anism

an environment and analyze a simpler one-threshold mechanism that approximates the optimal

mechanism with small waiting costs. Finally, we illustrate that the comparison between

centralized and discretionary processes described in the paper carries through in this more

general environment.

In what follows we allow for di¤erent type distributions for squares and rounds. Speci�cally,

we assume the probability that a square is an H-square is pH ; while the probability that a

round is an h-round is ph. Without loss of generality, we assume that pH � ph. Furthermore,

we allow for waiting costs to di¤er across market sides: we denote by cS the per-period cost

experienced by squares and by cR that experienced by rounds. We place no restrictions on

match utilities other than that they are assortative and super-modular.

3.1 Optimal Dynamic Mechanism

As seen in the body of the paper, when pH = ph, asymmetries in utilities play no role in the

characterization of the optimal mechanism, whose welfare depends on joint match surpluses

of the form Uxy = Ux(y)+Uy(x), for x = H;L and y = h; l. Similarly, the optimal mechanism

accounts for waiting costs incurred by pairs, cS + cR. An optimal mechanism can then be

derived from an optimal mechanism corresponding to an environment in which waiting costs
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for squares and rounds coincide and are equal to c � cS+cR
2

: Our focus here is, therefore, on

the impact of asymmetries in type distributions on our results, the case in which pH > ph.

As in the symmetric market, (H; h) and (L; l) pairs are matched immediately when avail-

able, and we focus on dynamic mechanisms that are identi�ed by a pair of thresholds (�kH ; �kh).

These thresholds do not necessarily coincide when type distributions di¤er for squares and

rounds. Intuitively, since H-squares are more prevalent than h-rounds, it is more valuable for

the mechanism designer to hold on to (L; h) pairs in the hopes of H-squares appearing in the

market than it is to hold on to (H; l) pairs. We now replicate the analysis of the paper for

arbitrary type distributions characterized by pH ; ph; where pH � ph. As in the paper, given

a pair of thresholds (�kH ; �kh), we �nd the resulting net expected time-average welfare at the

steady state. We look for the pair (�koptH ; �kopth ) that maximizes this objective.

Recall that stHh denotes the value of the (signed) length of the H-h queue at the beginning

of time t. xt 2 f0; 1g�kH+kh+1 is the timed vector such that xti takes the value of 1 if the state
is stHh and 0 otherwise. Then,

xt+1 = T�kH ;�khx
t;

where

T�kH ;�kh=

0BBBBBB@

1� (1� pH)ph pH(1� ph) : : : 0 0
(1� pH)ph pHph+(1� pH)(1� ph) : : : 0 0

0 (1� pH)ph : : : 0 0
...

...
. . .

...
...

0 0 : : : pH(1� ph) 0
0 0 : : : pHph+(1� pH)(1� ph) pH(1� ph)
0 0 : : : (1� pH)ph 1� pH(1� ph)

1CCCCCCA :

Since the above Markov chain is ergodic, the corresponding matching process reaches a

unique steady state with a distribution ��� � (��kH ; ��kH�1; : : : ; ���kh) that we now identify.
Denote

� � pH(1� ph) + (1� pH)ph; and

� � (1� pH)ph
pH(1� ph)

(< 1):
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The Markov transition matrix is then

T�kH ;�kh =

0BBBBBBBBBB@

1� �+ �
�+1

�
�+1

: : : 0 0
��
�+1

1� � : : : 0 0

0 ��
�+1

: : : 0 0
...

...
. . .

...
...

0 0 : : : �
�+1

0

0 0 : : : 1� � �
�+1

0 0 : : : ��
�+1

1� �+ ��
�+1

1CCCCCCCCCCA
:

In particular,

��kH =

�
1� � +

�

�+ 1

�
��kH +

�

�+ 1
��kH�1 =) ��kH�1 = ���kH ;

��kH�1 =
��

�+ 1
��kH + (1� �)��kH�1 +

�

�+ 1
��kH�2 =) ��kH�2 = ���kH�1 = �2��kH ;

...

���kHh
=

��

�+ 1
���kh+1 +

�
1� � +

��

�+ 1

�
��kH +

�

�+ 1
��kH�1 =) ���kh = �

�kH+�kh��kH :

Since
P�kH+�kh

k=0 �k��kH = 1, it follows that

��kH =
1� �

1� �
�kH+�kh+1

:

Therefore,

��kH�k =
(1� �)�k

1� �
�kH+�kh+1

for every k = 0; 1; : : : ; �kH + �kh:

Then the expected time-average match surplus at the steady state is:

S(�kH ; �kh) = pHphUHh + (1� pH)(1� ph)ULl

+ 1fkH > 0g

0@ �kHX
k=1

�
�kH�k��kH (1� pH)ph(UHh + ULl)

1A
+ 1fkh > 0g

0@ �khX
k=1

�
�kH+k��kHpH(1� ph)(UHh + ULl)

1A
+ ��kHpH(1� ph)UHl + �

�kH+�kh��kH (1� pH)phULh:

The expected time-average waiting costs at the steady state are:

C(�kH ; �kh) = 2c��kH

0@ �kHX
k=0

k�
�kH�k +

�khX
k=0

k�
�kH+k

1A :
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The optimal dynamic mechanism is identi�ed by the pair of thresholds (�koptH ; �kopth ) that maxi-

mize the expected time-average welfare, S(�kH ; �kh)� C(�kH ; �kh).

3.2 One-Threshold Mechanisms

WhenH-squares are strictly more likely to arrive than h-rounds (pH > ph), there is a relatively

small chance that many h-rounds arrive at the market and are not matched with H-squares.

In other words, the (signed) length of the H-h queue is unlikely to reach very negative values.

Therefore, we can consider a simpler mechanism, which only limits the length of the queue

of H-squares. It turns out that the most e¢ cient one-threshold mechanism, in spite of being

less e¢ cient than the optimal mechanism, is asymptotically e¢ cient as waiting costs, cS and

cR, vanish.

We �nd the expected total welfare for one period of time of the two-threshold dynamic

mechanism (�kH ; �kh) as �kh becomes in�nitely large.5

In the limit,

��kH�k = (1� �)�k for every k = 0; 1; 2; : : : :

By applying this limit steady-state distribution to the formulations of S(�kH ; �kh) and C(�kH ; �kh)

above, we obtain the corresponding limit match surplus and costs S(�kH ;1) and C(�kH ;1),
respectively.

S(�kH ;1) = pHphUHh + (1� pH)(1� ph)ULl

+ 1fkH > 0g

0@�kH�1X
k=0

(1� �)�k(1� pH)ph(UHh + ULl)

1A
+

 1X
k=1

(1� �)�
�kH+kpH(1� ph)(UHh + ULl)

!
+ (1� �)pH(1� ph)UHl:

and

C(�kH ;1) = 2c(1� �)

0@ �kHX
k=0

k�
�kH�k +

1X
k=0

k�
�kH+k

1A :

5Technically, a one-threshold mechanism de�nes a Markov chain with a countable state space
f: : : ;�1; 0; 1; : : : ; �kHg. However, when transitions toward state �kH occur with probability strictly higher
than that of transitions away from state �kH (i.e., pH(1 � ph) > ph(1 � pH)), the steady-state probabilities
for the truncated Markov chain de�ned by a two-threshold mechanism (�kH ; �kh) approach the steady-state
probabilities for the untruncated Markov chain as �kh increases.
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We can simplify the above expressions to achieve, for every �kH = 0; 1; 2; : : : ,

S(�kH ;1) = phUHh + (1� pH)ULl + (pH � ph)UHl = S1; and

C(�kH ;1) = 2c(1� �)�
�kH

0@ �

(1� �)2
+

�kHX
k=0

k��k

1A :

The expected time-average welfare is W (�kH) � S(�kH ;1)� C(�kH ;1):
We inspect the marginal time-average welfare with respect to the length of the queue of

H-squares �+W (�kH) � W (�kH + 1) �W (�kH) and �nd the most e¢ cient one-threshold �k��H
from

�+W (�k
��
H ) � 0 � �+W (�k

��
H � 1): (3)

Now, to derive a closed-form solution for �k��H , notice that the expected total surplus

S(�kH ;1) is a constant function of �kH . Therefore,

�+W (�kH) = C(�kH ;1)� C(�kH + 1;1)

= 2c(1� �)
�
�
�kH � �

�kH+1
�0@ �

(1� �)2
+

�kHX
k=0

k��k

1A
+2c(1� �)�

�kH+1

0@ �kHX
k=0

k��k �
�kH+1X
k=0

k��k

1A = 2c(2�
�kH+1 � 1):

The most e¢ cient one-threshold mechanism is identi�ed from (3) as:

�k��H =

�
� log 2
log �

�
=

�
� log 2

log(1� pH) + log ph � log pH � log(1� ph)

�
:

The most e¢ cient one-threshold mechanism �k��H does not depend on c. In fact, every

�xed one-threshold mechanism is asymptotically e¢ cient with vanishingly small waiting costs.

Intuitively, in the one-threshold mechanism, an incongruent pair leaves the market only when

the state is kHh = �kH , which always occurs with probability 1 � � at the steady state.

Therefore, all one-threshold mechanisms result in the same expected fraction of incongruent

pairs matched in the steady state. In fact, the expected total time-average match surplus is

S1 regardless of the threshold �kH . For any �xed threshold �kH , as waiting costs approach zero,

the expected total time-average waiting costs approach zero and e¢ ciency is achieved.

As a corollary, it follows that the optimal (two-threshold) mechanism is approximately

e¢ cient as waiting costs vanish.
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3.3 Discretionary Matching

We focus on regular environments in which

ph(UH(h)� UH(l)) 6= kcS and pH(Uh(H)� Uh(L)) 6= kcR

for every k 2 Z+.
The decisions of an H-square (and, analogously, an h-round) remain as described in the

body of the paper. Namely, when an H-square arrives at the market and an h-round is

available, an (H; h) pair is formed immediately. If an h-round is not available, the arriving

H-square decides to wait in the queue based on the number of H-squares already in the queue.

Since an h-round is not available, this implies that the H-square arrived with a l-round. As

all l-rounds in the market are willing to match with H-squares, the newly arrived H-square

will wait if and only if the gain UH(h)�UH(l) exceeds the expected waiting costs till matching
with an h-round.

In analogy with Lemma 1 in the paper, the (signed) length of the H-h queue at the

beginning of a period, kHh � kH � kh, will then be bounded as follows

��kfifoh � kHh � �kfifoH ;

where

�kfifoH � max
�
k 2 Z+ j

kcS
ph

< UH(h)� UH(l)

�
; and

�kfifoh � max
�
k 2 Z+ j

kcR
pH

< Uh(H)� Uh(L)

�
:

A l-round (similarly, a L-square) may decide to wait to match with anH-square if the queue

of H-squares is long and expected to hit the threshold �kfifoH within a su¢ ciently short time.

In contrast with the symmetric case, L-squares and l-rounds may now wait simultaneously in

equilibrium. Intuitively, consider an environment in which both types of rounds are nearly

indi¤erent between matching withH-squares or L-squares and therefore match with whomever

is available immediately. In such an environment, a L-square, who is �rst in line, may decide

to wait in the market, even when arriving with a l-round, in the hopes of a (L; h) pair arriving

in the next period. In other words, in general asymmetric markets, Lemma 2 of the paper

does not hold.
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A full characterization of the equilibrium requires the analysis of a rather complex random

process of the 3-dimensional vector (kHh; kL; kl). As such, in this Online Appendix we study

a one-dimensional Markov process of kHh only, with a transition matrix as described in Sec-

tion 3.1 in order to achieve bounds on the equilibrium welfare in the asymmetric discretionary

process.

In equilibrium, as well as under the one-dimensional protocol discussed above, the expected

time-average surplus is bounded above by S1 = phUHh + (1 � pH)ULl + (pH � ph)UHl. In

the one-dimensional process with thresholds �kfifoh and �kfifoH ; at each state kHh, either kHh

H-squares (and at least as many l-rounds) or jkHhj h-rounds (and at least as many L-squares)
incur waiting costs. Since in equilibrium there might be additional waiting costs incurred

through the simultaneous waiting of L-squares or l-rounds, it follows that the resulting per

period welfare W fifo(cS; cR) can be bounded as follows:

W fifo(cS; cR) � S1 � (cS + cR)��kfifoH

0@�kfifoHX
k=0

k�
�kfifoH �k +

�kfifohX
k=0

k�
�kfifoH +k

1A :

After some algebraic manipulation, we can show that

lim
(cS ;cR)!(0;0)

W fifo(cS; cR) � S1 � lim
(cS ;cR)!(0;0)

(cS + cR)�k
fifo
H � S1 � lim

cS!0
cS�k

fifo
H

� S1 � ph(UH(h)� UH(l)):

This echoes Corollary 3 in the main text of the paper. The bound on the welfare wedge

between the discretionary protocol and the optimal mechanism exhibits similar comparative

statics to those described in the paper, increasing in ph and in UH(h)� UH(l).

4 Richer Type Sets

The paper considers a simpli�ed setting in which types are binary� there are only two types

of squares and two types of rounds. This assumption allows us to illustrate the forces acting

in centralized and discretionary dynamic matching markets in a simple and transparent way.

A natural extension of our setting is to an environment in which each square can take one

of multiple types S1; :::Sl and each round can take one of multiple types R1; :::; Rm with

distributions p and q; respectively. Denote by USi(Rj) the utility a square of type Si gets from
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matching with a round of type Rj and by URj(Si) the utility a round of type Rj gets from

matching with a square of type Si. Assume that preferences are assortative, so that:

USi(R1) > USi(R2) > ::: > USi(Rm) for all i; and

URj(S1) > URj(S2) > ::: > URj(Sl) for all j:

Assume also that preferences are super-modular, so that:

USi(Rv)� USi(Rw) > USj(Rv)� USj(Rw) and

URv(Si)� URv(Sj) > URw(Si)� URw(Sj) for all i < j and v < w:

These assumptions mirror the assumptions asserted by Becker (1974) for assortative super-

modular markets and correspond to a set of environments that contain the one studied in the

body of the paper as a special case.

The full characterization of the optimal mechanism in this more general setting requires

some new tools and is left for future research. However, our analysis of the binary-type envi-

ronment does provide a set of necessary restrictions on the optimal mechanism in this setting.

Certainly, since utilities are super-modular, whenever an S1-square and an R1-round, or an

Sl-square and an Rm-round, are available in the market, they are to be matched immediately.

Next, consider the potential match of a pair (Sy; Rz), with 1 � y � l; 1 � z � m, available on

the market. A decision of not matching the pair can be justi�ed by either one of the following

scenarios:

1. planning to match Sy to Rz0 with z < z0 and Rz to Sy0 with y0 < y, or

2. planning to match Sy to Rz0 with z > z0 and Rz to Sy0 with y0 > y.

In any other scenario, both Sy and Rz match with better partners than each other, or both

match with worse partners than each other. Since utilities are super-modular, this would lower

overall welfare and entail additional waiting costs incurred by Sy and Rz. Therefore, the pair

(Sy; Rz) is matched immediately when neither scenario 1 nor scenario 2 hold.

To obtain necessary conditions for the optimal mechanism in this setting, we analyze two

induced binary-type markets, such that (Sy; Rz) constitutes an incongruent pair in both. As

for the �rst binary-type market, if 1 � y < l and 1 < z � m, consider the following partition

of the types of squares and rounds: H= fS1; :::; Syg;L= fSy+1; :::; Slg;h= fR1; :::; Rz�1g; and
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� = fRz; :::; Rmg: In particular, an Sy-square in the original market is classi�ed as an H-
square in this induced binary market and an Rz-round in the original market is classi�ed as

a �-round in the induced binary market. Accordingly, denote

pH �
yX
i=1

pi and ph �
z�1X
j=1

qj

so that squares are of either type H or L (with probability pH or 1 � pH) and rounds are of

either type � or � (with probability ph or 1 � ph). Finally, we choose utilities in the �rst

binary-type market that are consistent with the partition of squares and rounds we de�ned

above and maximize the extent of super-modularity, i.e., the e¢ ciency gain from matching

agents assortatively. Speci�cally, de�ne

(x; w) 2 argmax
f(x;w) jx = y + 1; ::; l;

w = 1; ::; z � 1g

USyRw + USxRz � USyRz � USxRw :

In words, x and w are chosen in fy + 1; ::; lg and in f1; ::; z � 1g, respectively, to maximize
supermodularity. However, for any x > y and w 2 f1; ::; z � 1g; we have USyR1 � USxR1 �
USyRw �USxRw because of supermodularity, which guarantees that w = 1: Therefore, we have

x 2 argmax
x2fy+1;::;lg

USxRz � USxR1 ;

the solution of which, since USxRz � USxR1 � 0; is x = l: Then, we choose:

UH(h) � USy(R1); UH(l) � USy(Rz);
UL(h) � USl(R1); UL(l) � USl(Rz);
Uh(H) � UR1(Sy); Uh(L) � UR1(Sl);
Ul(H) � URz(Sy); Ul(L) � URz(Sl):

As for the second binary-type market, if 1 < y � l and 1 � z < m, we consider the

binary-type partition, H= fS1; : : : ; Sy�1g, L= fSy; : : : ; Slg, � = fR1; : : : ; Rzg, and � =

fRz+1; : : : ; Rmg. We de�ne type distributions, lengths of queues, and utilities to maximize
the extent of super-modularity similarly to the �rst binary-type market, which in this case

are de�ned as:
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UH(h) � US1(Rz); UH(l) � US1(Rm);
UL(h) � USy(Rz); UL(l) � USy(Rm);
Uh(H) � URz(S1); Uh(L) � URz(Sy);
Ul(H) � URm(S1); Ul(L) � URm(Sy):

Notice that any state in our original multiple-type market can be mapped into a state

in each of the two induced binary markets, for which our analysis identi�es the optimal

mechanism, see Section 3.1 in this Online Appendix. We are now ready to state necessary

conditions for the optimal mechanism in the richer type-sets case as follows:

Proposition B3 In any scenario in which both the match (H; l) and the match (L; h) are

created in the �rst and second binary market, respectively, then the match (Sy; Rz) is

created immediately by any optimal mechanism in the original market.

Following a similar logic, we can identify another set of necessary conditions of the optimal

mechanism. Speci�cally, in the binary-type market with partitions H= fS1; : : : ; Syg, L=
fSy+1; : : : ; Slg, � = fR1; : : : ; Rz�1g, and � = fRz; : : : ; Rmg, we de�ne the utilities in the �rst
binary-type market as before, but now x and w are chosen to minimize supermodularity as

follows:

(x; w) 2 argmin
f(x;w) jx = y + 1; ::; l;

w = 1; ::; z � 1g

USyRw + USxRz � USyRz � USxRw :

For arguments similar to the ones above, it is easy to see that x = y + 1 and w = z � 1: In
addition, we can de�ne the second binary-type market asH= fS1; : : : ; Sy�1g, L= fSy; : : : ; Slg,
� = fR1; : : : ; Rzg, and � = fRz+1; : : : ; Rmg, with corresponding supermodularity-minimizing
utilities (where now x = y � 1 and w = z + 1). Then, the utility speci�cation of the two

binary-type markets assures the following necessary conditions for the optimal mechanism:

Proposition B4 In any scenario in which the matches (H; l) and (L; h) are not formed in

any of the binary-type markets, then the match (Sy; Rz) is not created by any optimal

mechanism in the original market.
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5 Independent Arrivals

We have assumed that at each period a square and a round arrive at the market. As mentioned

in Section 2 of the paper, allowing for pairs to arrive at random times (say, through a Poisson

arrival process) would not change any of the analysis. The only modi�cation would be the

e¤ective length of a period� instead of a unit of time, it would correspond to the expected

time until a new pair arrives.

Allowing for independent arrivals of squares and rounds requires some changes in our

analysis, however. To see this, consider a symmetric environment in which a square arrives

with probability q each period and, similarly, a round arrives with probability q each period.

As we assumed throughout the paper, a newly arrived square is of typeH or L with probability

p or 1 � p, respectively. Likewise, a newly arrived round is of type h or l with probability p

or 1� p, respectively. In this setting, there is a probability that a long queue of squares (or,

similarly, rounds) would form with no round (or square) available, of whichever type.

For any �xed value of the outside option, there would be a su¢ ciently high threshold above

which it would be optimal to retire a square and allow her to bene�t from the outside option

instead of experiencing a prohibitively long wait. In addition to our symmetry assumptions

on utilities, suppose that H-squares and h-rounds face equivalent outside options and that,

similarly, L-squares and l-rounds face equivalent outside options. It can be shown that the

optimal mechanism is identi�ed by a threshold �k� such that whenever the number ofH-squares

exceeds �k�, H-squares are matched with l-rounds if those are available. Similarly, whenever

the number of h-rounds exceeds �k�, h-rounds are matched with L-squares if those are available.

There is also a second threshold �kH � �k� such that any excess of H-squares beyond �kH and

any excess of h-rounds beyond �kH is retired from the market immediately (in the absence of

l-rounds or L-squares to match them with). Last, the mechanism speci�es when to retire L-

squares or l-rounds, depending potentially on the number of available h-rounds or H-squares,

respectively.
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6 Additional Proofs

6.1 Proofs Regarding Conditions 1 and 2

We present the proof of Lemma A1 from the Appendix of the main text, followed by Theorem

B1, which illustrates that the restriction to SD-mechanisms satisfying Conditions 1 and 2 we

imposed in the main text is without loss of generality.

Proof of Lemma A1: We prove that for any deterministic mechanism �, there exists another

deterministic mechanism �0 such that Conditions 1 and 2 hold and v(�0) � v(�). The result

extends to random mechanisms, which are essentially convex combinations of deterministic

mechanisms.

(1) Take any (deterministic) mechanism � that may hold some (H; h) pairs after some

histories. Consider another mechanism �0 that creates the same set of matches as � at every

history, except that (i) when � holds an (H; h) pair, say agents (i; j), �0 matches the pair as

soon as they are available, (ii) �0 does not create any match that � creates involving either i

or j, and (iii) if � matches i to a round r(6= j) in period t0 > t, and matches j to a square

s(6= i) in period t00 > t, then �0 forms the match (s; r) in period maxft0; t00g. It is clear from
the construction that v(�0) � v(�) since �0 involves strictly lower waiting costs and a weakly

higher match surplus than � does for every �nite time horizon. The argument that we can

further improve �0 by matching (L; l) pairs immediately follows analogously.

(2) Take a (deterministic) mechanism �, and assume, without loss of generality from

the previous step, that (i) � matches a newly arriving pair of (H; h) or (L; l) immediately.

Assume additionally that, (ii) � matches H-squares (or l-rounds) who are held in the market

to h-rounds (respectively, L-squares) on a �rst-in-�rst-out (FIFO) basis, and to l-rounds

(respectively, H-squares) on a last-in-�rst-out (LIFO) basis. That is, when � matches an

existing H-square to an h-round upon an arrival of (L; h), it selects the H-square who arrived

�rst among all existing H-squares. However, when � matches an existing H-square to a l-

round, it selects the H-square who arrived last. This assumption does not a¤ect v(�) since

agents of the same type are interchangeable from a welfare perspective.

Suppose that � holds m =
�
U
2c

�
or more (H; l) pairs at some histories. We construct

another mechanism �0 that creates the same set of matches as � at every history, except that

whenever � holds m or more (H; l) pairs, �0 holds only f(Hi; li)gi=1;:::;m (where the index i

marks the order of arrival at the market, with lower indices denoting more recent arrivals) and
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matches f(Hi; li)gi>m immediately. Naturally, at later periods, when � creates some matches
with agents who have already left under �0, the mechanism �0 does not create those matches.

Also, for any (H; l) pair, say (i; j), that �0 creates but � does not (namely, i > m), if � matches

i to a round r(6= j), and j to a square s(6= i) at some later periods, �0 matches (r; s) as soon

as they become available.

We claim that v(�0) � v(�). To see this, take any (H; l) pair, say (i; j), held by the

mechanism �, but not �0, at some period t. Assumptions (i) and (ii) above and the fact that

only one pair arrives at each period guarantee that either of the following options occur: (a)

� matches the pair (i; j) at some period after t, or (b) � matches i to an h-round r(6= j), and

j to a L-square s(6= i) at the same period t0 � t+m upon the arrival of (r; s).

In both cases (a) and (b), � generates a lower average welfare than �0 for every �nite time

horizon. Case (a) is clear. For case (b), note that the additional waiting costs generated by �

are strictly higher than ( U
2c
)(2c) and therefore exceed the highest surplus gain U that can be

generated by holding i and j and matching them with others: i.e., Uir +Usj �Uij �Urs � U .

We omit an analogous proof showing that we can further improve �0 by not holding more

than U
2c
number of (L; h) pairs on the market. �

As described in the main text, Lemma A1 allows us to simplify our problem using the

following Markov decision problem with agents arriving in incongruent pairs, a �nite set of

states, and a �nite set of actions:

(MDP; s0) � fT; S; s0; K; (r(s; k); p(�jk))s2S;k2Hsg;

where s0 denotes a particular initial state. Each component is de�ned as follows:

1. T � f0; 1; 2; : : : g is the set of decision event times. As described in the body of the paper,
event times correspond to times at which incongruent pairs (H; l) or (L; h) arrive. Since

the probability of an incongruent pair arriving at any period is 2p(1� p); the expected

time between event times is 1
2p(1�p) .

2. S � fz 2 Z : �(U=2c) � 1 � z � (U=2c) + 1g is the set of possible states (or stocks).
Each state sHh � sH � sh 2 S represents the (signed) number of incongruent pairs of

type (H; l) or (L; h) in the market. Since we restrict our attention to mechanisms that

do not hold more than U=2c squares (and rounds), a state, which takes a new arriving

pair into account, has to belong to the set f� bU=2cc � 1; :::; bU=2cc+ 1g.
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3. s0 = 0 is the the initial state. Initially, no agent waits.

4. K � fz 2 Z : �U=2c � z � U=2cg is the set of available actions. Each k 2 K represents

the (signed) number of incongruent pairs held in the market from one period to the next.

5. r(s; k) is the reward function: for every s 2 S, k 2 K,

r(s; k) =

8><>:
(s� k)UHl � kc

2p(1�p) if s � k � 0
(jsj � jkj)ULh � jkjc

2p(1�p) if s � k � 0
�1 otherwise:

The expected waiting cost incurred to any agent who waits for one event time is c
2p(1�p) .

The reward function returns �1 if an action is infeasible. For all feasible actions, the

values of the reward function are in the interval
h
� U
4p(1�p) ; (

U
2c
+ 1)UHh

i
.

6. p(s; k) is the transition probability, the probability the system is in state s 2 S at any

time � + 1, after the action k has been chosen at time � . In particular,

p(s; k) =

�
1=2 for s = k � 1; k + 1;
0 otherwise:

(MDP; s0) is stationary in the sense that the reward function r(s; k) and the transition

probability function p(s; k) do not depend on time, or event times, explicitly. A policy of

(MDP; s0) is any rule, deterministic or randomized, governing the choice of actions. Such a

rule may, in principle, be history-dependent. The value of a policy � is then,

v(�) � lim inf
T!1

1

T
E�

"
TX
�=1

r(s� ; k� )

#
:

A stationary and deterministic policy, which we call a SD-policy, of (MDP; s0) applies the

same deterministic decision rule �SD : S ! K regardless of the history. The value of �SD is

then

v(�SD) = lim
T!1

1

T
E

"
TX
�=1

r(s� ; �SD(s� ))

#
:

The limit exists, as guaranteed, for example, by Proposition 8.1.1(b) in Puterman (2005).

We now show that restricting attention to mechanisms satisfying Conditions 1 and 2 in

the main text is without loss of generality.
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Theorem B1 There exists an optimal SD-mechanism that satis�es Conditions 1 and 2.

Proof of Theorem B1: In what follows, we prove that there exists an optimal SD-policy

of (MDP; s0). By Lemma A1, an optimal SD-policy of (MDP; s0) de�nes an optimal SD-

mechanism of our matching problem. The following result from Ross (2014) will be useful.

Theorem Ross 1 (V.2.1 in Ross, 2014) If there exists a bounded function h(s); s 2 S;

and a constant g such that

g + h(s) = max
k2K

"
r(s; k) +

X
s02S

p(s0; k)h(s0) p s 2 S
#
for all s 2 S; (4)

1. there exists an SD-policy �� such that

g = v(��) = sup
�
v(�);

2. �� is any SD-policy that, for each s 2 S; prescribes an action k that maximizes the

RHS of (4).

We extend the notion of (MDP; s0) by allowing the initial state to be an arbitrary s 2 S,
and we denote the Markov decision problem with an arbitrary initial state by (MDP ). It

is straightforward to extend the de�nition of a policy and a SD-policy to (MDP ). Let E�

represent an expectation conditional on policy � being implemented. For any 0 < � < 1, initial

state s 2 S, and a policy � of (MDP ), de�ne

v�(�; s) � E�

" 1X
�=0

r(s� ; k� )�� js
#
:

For each s 2 S, v�(�; s) represents the expected total discounted return earned when the

policy � of (MDP ) is employed. Since the reward function is bounded by the intervalh
� U
4p(1�p) ;

U
2c
UHh

i
, and 0 < � < 1; the expectation is well-de�ned for all policies that im-

plement feasible actions. For any � 2 (0; 1) and initial state s 2 S, let

v�(s) � sup
�
v�(�; s):

The following second theorem from Ross (2014) describes su¢ cient conditions for applying

Theorem Ross 1, and therefore guaranteeing that there exists an optimal SD-policy of (MDP ),

which is also an optimal SD-policy of (MDP; s0) and de�nes an optimal SD-mechanism for

our dynamic matching problem.
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Theorem Ross 2 (V.2.2 in Ross, 2014) If there exists M <1 such that

jv�(s)� v�(0)j < M for all � 2 (0; 1) and s 2 S;

then there exists a bounded function h(s) and a constant g satisfying (4).

By Theorems Ross 1 and Ross 2, the following claim is su¢ cient to complete the proof of

Theorem B1.

Claim: There exists M <1, such that, for any s 2 S, � 2 (0; 1), and policy � of (MDP ),

there exists another policy �0 of (MDP ) with

jv�(�; s)� v�(�
0; 0)j < M:

Proof of Claim: Take any initial state s 2 S, � 2 (0; 1), and policy � of (MDP ). Let s > 0

(a similar proof, which we omit, applies for the case of s < 0). We assume, as above, that

� matches agents on a FIFO basis. Let m � b(U=2c) + 1c denote the maximum number of

incongruent pairs that � would hold on the market, after a new pair�s arrival. During the

�rst 3m event-time periods, 3m incongruent pairs arrive at the market. Let n be the number

of (H; l) pairs arriving during the �rst 3m event-time periods, so 3m � n is the number of

(L; h) pairs arriving. Suppose that n < 2m, so at least m number of (L; h) pairs arrive. As

the policy � matches agents on a FIFO basis and never holds (H; h) or (L; l) pairs, all agents,

both H-squares and l-rounds, who were initially in the market would be matched by � within

the �rst 3m event-time periods. Next, suppose n � 2m. As � holds at most m incongruent

pairs at any time, it would hold at most m number of (H; l) pairs at the end of event time

3m. Because of the FIFO protocol, all (H; l) pairs held by � at the end of event-time 3m must

have arrived after the initial event-time period.

We construct another policy �0 of (MDP ) that di¤ers from � only when the initial state

is 0. If the initial state is 0, in each of the �rst 3m event-time periods, �0 holds all agents who

arrived after the initial event-time period and would have been held by � if the initial state

were s and the same types of agents arrived. In these 3m event-time periods, the policy �0

with the initial state 0 matches all other agents arbitrarily and immediately.

From our discussion above, after event time 3m, the policy �0 with initial state 0 creates the

same matches as � were the initial state s. Therefore, the rewards generated by �0 with initial
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state 0 di¤er from those generated by � with initial state s only for the �rst 3m event-time

periods. Thus,

jv�(�; s)� v�(�
0; 0)j � 3m

�
U

2c
UHh +

U

4p(1� p)

�
;

where the inequality is guaranteed by the fact that the reward function is bounded inh
� U
4p(1�p) ;

�
U
2c
+ 1
�
UHh

i
. Note that the right hand side is independent of s and �. Therefore,

the claim holds for M � 3
�
U
2c
+ 1
� �

U
2c
UHh +

U
4p(1�p)

�
: �

6.2 Proofs Regarding the LIFO Protocol

Proof of Lemma 3: For an H-square, say player i, let �i = (s; qi) denote her augmented

state, where qi now denotes her rank under the LIFO protocol. We de�ne a threshold strategy

as a SD-strategy  H such that, with some �kH 2 Z+,

 H(�i) =

�
h if qi � �kH
l if qi > �kH + 1

: (5)

Similarly, we de�ne a threshold strategy for h-rounds with the threshold denoted by �kh.

Suppose that all H-squares play a threshold strategy  H with threshold �kH 2 Z+. We use
an absorbing Markov chain to compute the expected total payo¤ for an H-square, say player

i, whose augmented state is �ti = (s
t; qti) in some period t.

The state space of the absorbing Markov chain is f1; 2; 3; : : : ; �kH ; h; lg where integer tran-
sient states denote player i�s ranking q�i (1 if there are no H-squares who arrived after i that

are waiting), and each of the two absorbing states h and l denote the type of player i�s match

partner. The event time � starts from 0 and increases for each arrival of an incongruent pair.6

In expectation, an increment of � takes 1
2p(1�p) periods. The matrix of transition probabilities

pij from state i to j is

P =

�
Q R
0 I

�
, where Q =

2666664
0 1=2 � � � 0
1=2 0 � � � 0
...

...
. . .

...
0 � � � 0 1=2
0 � � � 1=2 0

3777775 , R =
26664
1=2 0
0 0
...

...
0 1=2;

37775 , and I =
�
1 0
0 1

�
:

Q represents the transitions between transient states. For any 1 < k < �kH , the state changes

upon an arrival of either an (H; l) or a (L; h) pair, each of which occurs with conditional

6An arrival of (H;h) or (L; l) does not change player i�s position in line. In particular, if an (H;h) pair
arrives, the new players match with each other immediately under LIFO.
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probability 1=2. R11 represents the probability of a transition from qi = 1 to an absorbing

state h caused by an arrival of a (L; h) pair. R�kH2 represents the transition from qi = �kH to

an absorbing state l caused by an arrival of an (H; l) pair.

Let N � (I�kH � Q)�1, T � N � 1, and L � NR. The absorbing Markov chain with

initial state k 2 f1; 2; : : : ; �kHg is absorbed in Tk expected number of steps. It is absorbed
by state h (or l) with probability Lkh (or Lkl; respectively). It is easy to verify that N is a

symmetric matrix with Nij =
2j(k�i+1)

k+1
for all i � j, Tk = T�kH+1�k =

Pk
i=1(

�kH � 2(i� 1)) for
all k � �kH=2, and Lk2 = 1� Lk1 = k=(�kH + 1) for k = 1; : : : ; �kH .7 The expected total payo¤

for player i in period t with initial condition qti = k is

Lk1UH(h) + Lk2UH(l)� Tk
c

2p(1� p)
: (6)

This payo¤ is strictly decreasing in k, implying that a l-round with rank �kH has the highest

incentive to deviate from  H by demanding l, among all H-squares who are supposed to

demand h according to  H . The total expected payo¤ for player i with q
t
i =

�kH is

1
�kH + 1

UH(h) +
�kH

�kH + 1
UH(l)�

�kHc

2p(1� p)
:

This payo¤ is strictly decreasing in �kH . Thus, there exists a maximum threshold, which we

denote by �klifo, such that player i�s payo¤ exceeds UH(l).8 After some algebraic steps, one

can verify that

�klifo �
$r

2p(1� p)(UH(h)� UH(l))

c
+
1

4
� 1
2

%
: (7)

Next, we show that if 	 = ( H ;  L;  h;  l) is a stationary
� equilibrium in which  H (and

 h) is a threshold strategy with a threshold �kH (respectively, �kh), then, �kH = �kh = �k
lifo.

(i) Suppose, toward a contradiction, that �kH > �klifo. Take any H-square i whose aug-

mented state in some period t satis�es qti = �kH . Her expected total payo¤ from period t by

7For example, if k = 5,

N =
1

6

266664
10 8 6 4 2
8 16 12 8 4
6 12 18 12 6
4 8 12 16 8
2 4 6 8 10

377775 ; T =

266664
5

5 + 3
5 + 3 + 1
5 + 3
5

377775 ; and L =
1

6

266664
5 1
4 2
3 3
2 4
1 5

377775 :

8The last payo¤ is never equal to UH(l) because of the regularity assumption.
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playing  H is strictly lower than UH(l). Therefore, player i has an incentive to deviate and

demand a l-round.

(ii) Suppose, toward a contradiction, that �kH < �klifo. Take any H-square i whose aug-

mented state in some period t satis�es qti = �k. We will show that player i has an incentive

to deviate and use the threshold �kH + 1 instead of �kH perpetually till matching. To show

that this deviation is pro�table, consider the following absorbing Markov chain. The state

space is f1; 2; : : : ; �kH ; �kH +1; hg, where each integer transient state denotes player i�s ranking,
and the absorbing state h represents the only possible match partner for i, a match with an

h-round. Indeed, the queue for H-squares never exceeds the threshold �kH + 1, because all

other H-squares use the threshold �kH . Therefore, player i will never match with a l-round.

The event time � increases for each arrival of an incongruent pair. The transition proba-

bility matrix is

P =

�
Q R
0 1

�
; where Q =

26664
0 1=2 0 � � � 0 0
1=2 0 1=2 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � 1=2 1=2

37775 and R =

26664
1=2
0
...
0

37775 :
To understand Q(�kH+1)(�kH+1) = 1=2, suppose that player i�s augmented state in some period

� satis�es q�i = �kH+1. If an (H; l) pair arrives in the following period, one of other H-squares

who play  H with threshold �kH demands a l-round and leaves the market. Player i�s rank (i.e.,

the state in the absorbing Markov chain) will remain at �kH + 1. Let N � (I�kH+1 �Q)�1 and

T � N �1. The absorbing Markov chain with initial state k 2 f1; 2; : : : ; �kH+1g is absorbed by
state h in Tk expected number of steps. It is easy to verify that N is a symmetric matrix with

Nij = 2j for all i � j, and Tk = 2
Pk

i=1(
�kH + 2 � i).9 Therefore, when player i�s augmented

state in period � is q�i = �kH + 1, she would deviate from  H by increasing the threshold to
�kH + 1 permanently because

UH(h)�
(�kH + 1)(�kH + 2)c

2p(1� p)
� UH(h)�

(�klifo)(�klifo + 1)c

2p(1� p)
> UH(l):

Thus, a stationary� strategy  H with threshold �kH < �klifo cannot be a stationary� equilibrium

strategy. �
9For example, if �kH + 1 = 3,

N =

242 2 2
2 4 4
2 4 6

35 ; T =

24 610
12

35 :
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Proof of Lemma 4: First, consider the decisions of H-squares. Suppose that H-squares

play a stationary� (threshold) strategy  H with threshold �k
lifo. We prove that, for each H-

square, say player i,  i =  H is an optimal policy of the (MDP ) (without restrictions on her

initial state), de�ned by other H-squares�strategy  H . It follows that  H is each H-square�s

best-response.

Given any initial augmented state �i = (s; qi) and other H-squares�strategy  H , de�ne

the value of policy  i(=  H) as

vi(�i; i;  H) � E i

" 1X
t=0

ui( i(�
t
i); �

t
i) : �

0
i = �i

#
:

From equation (6), we obtain that

vi(�i; i;  H) =

8><>:
UH(h) if qi � sh�
1� k

�klifo+1

�
UH(h) +

k
�klifo+1

UH(l)� Tk
c

2p(1�p) if k � qi � sh 2 f1; : : : ; �klifog
UH(l) if qi � sh > �k

lifo:

It is easy to verify that vi(�i; i;  H) solves the optimality equation

v(�i) = max
di2fh;lg

24ui(di; �i) + X
�0i2�i

p(�0i : �i; di)V (�
0
i)

35 for all �i 2 �i:

Then, by Theorem Puterman 2 appearing in the Appendix of the main text of the paper,  i is

an optimal SD-policy of the Markov decision problem, de�ned by other H-squares�stationary�

strategy  H .

Let us now turn to the l-rounds�decisions. Suppose that H-squares (and h-rounds) play

the stationary� strategy with threshold �klifo. Then, only if an (H; l) pair arrives, there may

exist anH-square (in fact, exactly oneH-square) who may demand a l-round, and she matches

with the last arriving l-round. Thus, if a l-round remains unmatched after the �rst period

at the market, he won�t match with an H-square ever again. Thus, every l-round has an

incentive to leave immediately. Therefore, we have that

 l(s; qi) =

�
h if sHh � �klifo + 1 and qi = 1
l otherwise;

(8)

is a best-response for all l-rounds with any initial augmented state. �

Proof of Corollary 5:
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1. Ignoring integer constraints, we have

lim
c!0

�kopt

�klifo
= lim

c!0

q
p(1�p)U

2cq
2p(1�p)(UH(h)�UH(l))

c
+ 1

4
� 1

2

=

p
p(1� p)Up

4p(1� p)(UH(h)� UH(l))

=
1

2

s
U

UH(h)� UH(l)
< 1;

where the last inequality is due to U < 4 (UH(h)� UH(l)) under our symmetry assumption.

Furthermore, we have �klifo < �kfifo if and only ifr
2p(1� p)(UH(h)� UH(l))

c
+
1

4
� 1
2
<
p(UH(h)� UH(l))

c
: (9)

Let x � 2p(1�p)(UH(h)�UH(l))
c

and z � p(UH(h)�UH(l))
c

; so that inequality (9) is equivalent toq
x+ 1

4
< z + 1

2
; or x < z2 + z: Thus, (9) is satis�ed if and only if

2p(1� p)(UH(h)� UH(l))

c
<
p2(UH(h)� UH(l))

2

c2
+
p(UH(h)� UH(l))

c
;

or equivalently

1� 2p < p(UH(h)� UH(l))

c
:

Therefore, if p � 1
2
; then 1 � 2p � 0; and �klifo < �kfifo for any c > 0: If p < 1

2
; then

1� 2p > 0; and �klifo < �kfifo for any c < p(UH(h)�UH(l))
1�2p :

2. As �klifo =
q

2p(1�p)(UH(h)�UH(l))
c

+ 1
4
� 1

2
and

W lifo(c) = S1 �
p(1� p)U

2�klifo + 1
� 2

�klifo(�klifo + 1)

2�klifo + 1
c; (10)

it is easy to verify that limc!0W
lifo(c) = S1: �

6.3 Proofs Regarding the Fixed-Window Protocol

Proof of Proposition B1:

1. Notice that

�+Wn =
p(1� p) � U

2n
� Pr(kH 6= kh;n)� 2c �

p(1� p)U

2n
� 2c:
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As the upper bound of �+Wn decreases in n, let x be the unique solution of

p(1� p)U

2x
� 2c = 0:

It follows that

no � x =
p(1� p)U

4c
:

2. We �nd a lower bound of �+Wn that will give us a lower bound on the optimal

window size. Fix a window size n, and de�ne a multinomial random variable Xt for each time

t = 1; 2; : : : ; n such that

Xt =

8<:
1 if (H; l) arrives,
�1 if (L; h) arrives,
0 otherwise.

Thus, for all t, Xt takes the values of 1;�1; or 0 with probabilities p(1 � p), p(1 � p), or

1� 2p(1� p), respectively. Notice that

kH � kh =
nX
t=1

Xt:

Let �(:) be the cumulative distribution function of the standard normal distribution. We

use the following Berry-Esseen Theorem on the speed of convergence in the Central Limit

Theorem (see Feller, 1972 and Tyurin, 2010).

Theorem (Berry-Esseen) Let Y1; Y2; ::Yn be i.i.d. random variables with mean 0 and vari-

ance �2; and Zn =
Pn
i=1 Yi
n

; and bGn be the cumulative distribution of
p
nZn
�

: Then,

sup
y

��� bGn(y)� �(y)
��� � E[jY1j3]

2�3
p
n
:

Now, note that we have

V ar[X1] = E[jX1j3] = 2p(1� p):

Let F̂n be the empirical cumulative distribution function of
kH�khp
2np(1�p)

: By the Berry-Esseen

Theorem,

Pr(kH = kh ; n) = F̂n

�
1=
p
2np(1� p)

�
� F̂n(0)

� �(1=
p
2np(1� p))� �(0) + 1p

2np(1� p)

� 1

2
p
�np(1� p)

+
1p

2np(1� p)
:
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Thus,

�+Wn � p(1� p)U

2n

 
1�

�
1

2
p
�
+

1p
2

�
1p

np(1� p)

!
� 2c (11)

=
p(1� p)U

2n

 
1�

p
2� + 1

2
p
�np(1� p)

!
� 2c:

We now show that there exists c1 > 0 such that for all c < c1; the optimal �xed window

size no is greater than 2 by illustrating that �+W1 > 0 and �+W2 > 0. Indeed,

�+W1 =
p(1� p)U

2
Pr(kH 6= kh ; 1)� 2c = p2(1� p)2U � 2c > 0;

and

�+W2 =
p(1� p)U

2
Pr(kH 6= kh ; 2)� 2c

=
p(1� p)U

4

�
1�

�
p2 + (1� p)2

�2 � 2p2(1� p)2
�
� 2c

� p(1� p)U

4
(1� p2 � (1� p)2)� p3(1� p)3U

2
� 2c

=
p2(1� p)2U

2
� p3(1� p)3U

2
� 2c � 3p2(1� p)2U

8
� 2c > 0

whenever c < c1 � 3p2(1�p)2U
16

:

We now consider n � 3: From (11), �+Wn � h(rn); where rn = n�1=2 and

h(r) � p(1� p)Ur2

2

 
1� (

p
2� + 1)r

2
p
�p(1� p)

!
� 2c:

We use the following observations (i)-(v), assuming that c < c2 � 4�p2(1�p)2U
27(
p
2�+1)2

< c1:

(i) �+W3 � h (r3) =
p(1�p)U

6

�
1�

p
2�+1

2
p
3�p(1�p)

�
� 2c: To show that h(r3) > 0, it is su¢ cient

to prove that

c <
4�p2(1� p)2U

27(
p
2� + 1)2

<
p(1� p)U

12

 
1�

p
2� + 1

2
p
3�p(1� p)

!
:

Indeed, the right inequality holds whenever

�

27(
p
2� + 1)2

<
1

12
�
p
2� + 1

24
p
3�

;

which holds if and only if

12�

27(
p
2� + 1)2

+

p
2� + 1

2
p
3�

= 0:4437422::: < 1:
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(ii) h0(r) = 0 at r = 0 and
4
p
�p(1�p)

3(
p
2�+1)

.

(iii) h(0) < 0 and h
�
4
p
�p(1�p)

3(
p
2�+1)

�
= 8�p2(1�p)2U

27(
p
2�+1)2

� 2c > 0.

(iv) Let c3 �
�

p(1�p)
4(UHh�ULl)

�2 �
U
3

�3 � c2. For every c < c3, let ro �
�

1
2p(1�p)

�1=6 �
c

UHh�ULl

�1=3
.

Then,

h(ro) =
p(1� p)U(ro)2

2
� p(1� p)U

2

(
p
2� + 1)(ro)3

2
p
�p(1� p)

� 2c

>
p(1� p)U(ro)2

2
� 3c

=

�
p(1� p)c

4(UHh � ULl)

�2=3
U � 3c > 0:

(v) h(r) is a cubic function and the leading coe¢ cient is negative. Thus, for any c < c3 and

r 2 [ro; 1=
p
3], we have h(r) > 0. It follows that, if window size n satis�es ro � 1=

p
n � 1=

p
3,

then h(1=
p
n) > 0. On the other hand, 0 � �+Wno � h(1=

p
no). Therefore,

no > (ro)�2 = (2p(1� p))1=3
�
UHh � ULl

c

�2=3
:

�

Proof of Proposition B2: We denote by Sn the ex-ante per-pair surplus when the window

size is n. We �nd bounds on Sn starting from the following inequalities:

Sn � E

�
min

�
kH
n
;
kh
n

��
� UHh +

�
1� E

�
min

�
kH
n
;
kh
n

���
� ULl and

Sn � E

�
max

�
kH
n
;
kh
n

��
� UHh +

�
1� E

�
max

�
kH
n
;
kh
n

���
� ULl:

Notice that

E

�
min

�
kH
n
;
kh
n

��
=

E [jkH + khj]� E [jkH � khj]
2n

= p� 1
2

s
(E [jkH � khj])2

n2

� p� 1
2

s
E
�
(kH � kh)

2�
n2

= p� 1
2

r
E [k2H ] + E [k2h]� 2E [kHkh]

n2

= p� 1
2

s
2

�
p2 +

p(1� p)

n

�
� 2p2

= p�
r
p(1� p)

2n
;
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where the �rst inequality follows from Jensen�s inequality, and the fourth equality from

E[k2H ] = V ar(kH) + (E[kH ])
2: Similarly, we obtain

E

�
max

�
kH
n
;
kh
n

��
� p+

r
p(1� p)

2n
:

Therefore, for every window size n,

S1 �
r
p(1� p)

2n
(UHh � ULl) � Sn � S1 +

r
p(1� p)

2n
(UHh � ULl) :

It follows that

S1 �
r
p(1� p)

2n
(UHh � ULl)� c(n� 1) � Wn � S1 +

r
p(1� p)

2n
(UHh � ULl)� c(n� 1):

We now turn to show the two parts of the claim.

1. We have

W fix(c) � Wn � S1 �
r
p(1� p)

2n
(UHh � ULl)� c(n� 1); for all n 2 Z+.

Note that the above lower bound is strictly concave in n. With ignoring the integer constrain

on n, the lower bound is maximized at m > 0 such that

� 1

2m3=2

r
p(1� p)

2
(UHh � ULl) + c = 0:

That is, m = (1=2) (p(1� p))1=3
�
UHh�ULl

c

�2=3
. With the integer constraint on window size,

the value of the lower bound is maximized at either bmc or dme.
2. From the above inequalities, we have

W fix(c) � S1 +

r
p(1� p)

2no
(UHh � ULl)� c(no � 1):

From the proof of Proposition B1, when c < c3, we have no > (2p(1 � p))1=3
�
UHh�ULl

c

�2=3
.

Therefore,

W fix(c) < S1 +

r
p(1� p)

2
(UHh � ULl)r

o � c(ro)�2 + c

= S1 � 2�2=3(p(1� p)c)1=3(UHh � ULl)
2=3 + c:

�
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